精英家教网 > 高中数学 > 题目详情
8.在△ABC中,a,b,c是角A,B,C的对边,A=$\frac{π}{3}$,C=$\frac{5π}{12}$,a=2$\sqrt{6}$,则b等于(  )
A.4B.2$\sqrt{3}$C.3D.2$\sqrt{2}$

分析 由已知利用三角形内角和定理可得B的值,利用正弦定理即可求b的值.

解答 解:∵A=$\frac{π}{3}$,C=$\frac{5π}{12}$,a=2$\sqrt{6}$,
∴B=π-A-C=$\frac{π}{4}$,
∴由正弦定理可得:b=$\frac{asinB}{sinA}$=4.
故选:A.

点评 本题主要考查了三角形内角和定理,正弦定理在解三角形中的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知角α的终边经过点P(x,-6),且cosα=$\frac{4}{5}$,则x的值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.直线(1-2a)x-2y+3=0与直线3x+y+2a=0垂直,则实数a的值为(  )
A.$-\frac{5}{2}$B.$\frac{1}{6}$C.$\frac{5}{6}$D.$\frac{7}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=sin($\frac{5π}{2}$-ωx)(ω>0),且其图象上相邻最高点、最低点的距离为$\sqrt{4+{π}^{2}}$.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若已知sinα+f(α)=$\frac{2}{3}$,求$\frac{2sinαcosα-2si{n}^{2}α}{1+tanα}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列命题为真命题的是(  )
A.已知x,y∈R,则$\left\{\begin{array}{l}{x>1}\\{y>2}\end{array}\right.$是$\left\{\begin{array}{l}{x+y>3}\\{xy>2}\end{array}\right.$的充要条件
B.当0<x≤2时,函数y=x-$\frac{1}{x}$无最大值
C.?a,b∈R,$\frac{a+b}{2}≥\sqrt{ab}$
D.?x∈R,sinx+cosx=$\frac{7}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在△ABC中,若A=$\frac{2π}{3}$,$\overrightarrow{AB}$•$\overrightarrow{AC}$=-2,则△ABC的面积S=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设f(x)=1-cosx,则f′($\frac{π}{2}$)等于(  )
A.2B.1C.0D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在△ABC中,角A、B、C的对边分别为a、b、c,a=3,A=45°,B=60°,则b=(  )
A.$\frac{3\sqrt{3}}{2}$B.$\frac{3\sqrt{6}}{2}$C.$\sqrt{3}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.命题p:复数z=(m2+m+1)+(m2-3m)i,m∈R表示的点位于复平面第四象限
命题q:函数f(x)=$\frac{1}{3}$x3-(4m-1)x2+(15m2-2m-7)x+2在R上是增函数
如果命题“p∧q”为真命题,求实数m的取值范围.

查看答案和解析>>

同步练习册答案