分析 (1)直接由已知条件求出AO、BO、OP的长度,即可得到所求函数关系式;
(2)记$p=\frac{2-sinx}{cosx}$,则sinx+pcosx=2,求出p的范围,即可得出结论.
解答 解:(1)由已知得$y=2×\frac{15}{cosx}+15-15tanx$,
即$y=15+15×\frac{2-sinx}{cosx}$(其中$0≤x≤\frac{π}{4}$)-----------------------------------------------(6分)
(2)记$p=\frac{2-sinx}{cosx}$,则sinx+pcosx=2,则有$|{\frac{2}{{\sqrt{1+{p^2}}}}}|≤1$,
解得$p≥\sqrt{3}$或$p≤-\sqrt{3}$------------------------------------------(10分)
由于y>0,所以,当$x=\frac{π}{6}$,即点O在CD中垂线上离点P距离为$({15-\frac{{15\sqrt{3}}}{3}})$km处,y取得最小值$15+15\sqrt{3}≈40.98$(km).-------------------------------------------------(14分)
点评 本题主要考查解三角形的实际应用,考查学生的计算能力.解决这类问题的关键在于把文字语言转换为数学符号,用数学知识解题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f′(sinx) | B. | -f′(sinx) | C. | f′(cosx)sinx | D. | -f′(cosx)sinx |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | e2f(-15)<f(-6),e2f(-11)<f(-20) | B. | e2f(-15)>f(-6),e2f(-11)>f(-20) | ||
| C. | e2f(-15)<f(-6),e2f(-11)>f(-20) | D. | e2f(-15)>f(-6),e2f(-11)<f(-20) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 任意三点确定一个平面 | |
| B. | 任意四点确定一个平面 | |
| C. | 三条平行直线最多确定一个平面 | |
| D. | 正方体ABCD-A1B1C1D1中,AB与CC1异面 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com