精英家教网 > 高中数学 > 题目详情
13.已知曲线C上的点到直线x=-2的距离比它到点F(1,0)的距离大1.
(Ⅰ)求曲线C的方程;
(Ⅱ)过点F(1,0)做斜率为k的直线交曲线C于M,N两点,求证:$\frac{1}{|MF|}$+$\frac{1}{|NF|}$为定值.

分析 (Ⅰ)利用抛物线定义“到定点距离等于到定直线距离的点的轨迹”求动点P的轨迹;
(Ⅱ)直线y=k(x-1)与抛物线方程联立,可得y2-$\frac{4}{k}$y-4=0,利用韦达定理及抛物线的定义,即可求出$\frac{1}{|MF|}$+$\frac{1}{|NF|}$为定值.

解答 (Ⅰ)解:因为动点P到直线x=-2的距离比它到点F(1,0)的距离大1,
所以动点P到直线x=-1的距离与它到点F(1,0)的距离相等,
故所求轨迹为:以原点为顶点,开口向右的抛物线y2=4x.
(Ⅱ)证明:直线y=k(x-1)与抛物线方程联立,可得y2-$\frac{4}{k}$y-4=0,
设M(x1,y1),N(x2,y2),y1+y2=$\frac{4}{k}$,y1y2=-4,
∴$\frac{1}{|MF|}$+$\frac{1}{|NF|}$=$\frac{1}{{x}_{1}+1}$+$\frac{1}{{x}_{2}+1}$=$\frac{{x}_{1}+{x}_{2}+2}{{x}_{1}{x}_{2}+{x}_{1}+{x}_{2}+1}$=$\frac{{x}_{1}+{x}_{2}+2}{\frac{{{y}_{1}}^{2}}{4}•\frac{{{y}_{2}}^{2}}{4}+{x}_{1}+{x}_{2}+1}$=$\frac{{x}_{1}+{x}_{2}+2}{{x}_{1}+{x}_{2}+2}$=1,
∴$\frac{1}{|MF|}$+$\frac{1}{|NF|}$为定值.

点评 本题考查抛物线定义,考查直线与抛物线的位置关系,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.向量$\overrightarrow{m}$和$\overrightarrow{n}$的起点都在坐标原点.$\overrightarrow{m}$=($\frac{{t}^{2}-5}{2a}$,t).$\overrightarrow{n}$=(-$\frac{{t}^{2-5}}{2b}$,t)(a,b为正常数,t∈R).
(1)当实数t变化时.求$\overrightarrow{m}$和$\overrightarrow{n}$的终点的运动轨迹C1和C2
(2)有长方形ABCD的四个顶点都在(1)中的C1与C2所围成图形的边界上.且长方形各边分别与x轴.y轴平行.顶点A,B在C2上.A(x,y),求该长方形的面积f(x)及其定义域;
(3)在上述条件下.若所有长方形ABCD中面积最大的是正方形,求a与b的关系.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.圆台的上下底面半径分别为1和2,它的侧面展开图对应扇形的圆心角为180°,那么圆台的表面积是(  )
A.B.C.D.11π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=x+lnx的零点个数是(  )
A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=log3x+x+m在区间($\frac{1}{3}$,9)上有零点,则实数m的取值范围是-11<m<$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,ABCD是边长为a的正方形,PA⊥平面ABCD.
(1)若PA=AB,点E是PC的中点,求直线AE与平面PCD所成角的正弦值;
(2)若BE⊥PC且交点为E,BE=$\frac{\sqrt{6}}{3}$a,G为CD的中点,线段AB上是否存在点F,使得EF∥平面PAG?若存在,求AF的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.一个长方体的底面是边长为2的正方形,高为$\sqrt{2}$,其俯视图是面积为4的正方形,侧视图是一个面积为4的矩形,则该长方体正视图的面积为(  )
A.4B.2$\sqrt{2}$C.8D.4$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在△ABC中,角A,B,C的对边是a,b,c,若asinA=csinC,b2+ac=a2+c2,则a,b,c等于(  )
A.1:1:2B.1:$\sqrt{2}$:1C.1:1:1D.1:1:$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设α、β为不重合的平面,m,n为不重合的直线,则下列命题正确的是(  )
A.若m∥α,n∥β,m⊥n,则α⊥βB.若m∥n,n∥α,α∥β,则m∥β
C.若α⊥β,α∩β=n,m⊥n,则m⊥αD.若α∩β=n,m∥α,m∥β,则m∥n

查看答案和解析>>

同步练习册答案