精英家教网 > 高中数学 > 题目详情
4.圆台的上下底面半径分别为1和2,它的侧面展开图对应扇形的圆心角为180°,那么圆台的表面积是(  )
A.B.C.D.11π

分析 作出圆台侧面展开图,根据圆台的结构特征求出圆台的母线长,代入面积公式计算.

解答 解:作出圆台侧面展开图如图所示,则πOA=2π×1,πOB=2π×2,∴OA=2,OB=4,
∴圆台的母线l=AB=2.∴圆台的表面积S=π×12+π×22+π×1×2+π×2×2=11π.
故选:D.

点评 本题考查了圆台的结构特征和表面积计算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.若f(x)=$\sqrt{x}$,φ(x)=1+sin2x.则f[φ(x)]=|sinx+cosx|,φ[f(x)]=(sin$\sqrt{x}$+cos$\sqrt{x}$)2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.圆O的半径为1,P为圆周上一点,现将如图放置的边长为1的正三角形(实线所示,正三角形的顶点A和点P重合)沿着圆周顺时针滚动,经过若干次滚动,点A第一次回到点P的位置,则点A走过的路径的长度为(  )
A.πB.$\frac{4}{3}$πC.$\frac{5}{3}$πD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.数列{an}满足${a_{n+1}}=\frac{{2{a_n}-9}}{{{a_n}-4}}({n∈{N^+}})$,且a1=2.
(1)写出a2,a3,a4的值;
(2)归纳猜想数列{an}的通项公式,并用数学归纳法证明;
(3)设${b_n}=({{a_{n+1}}-3})({{a_n}-3})({n∈{N^+}})$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在一个港口,相邻两次高潮发生时间相距12h,低潮时水的深度为8.4m,高潮时为16m.一次高潮发生在10月10日4:00.每天涨潮落潮时,水的深度d(m)与时间t(h)近似满足关系式d=Asin(ωt+φ)+h.
(1)若从10月10日0:00开始计算,求该港口的水深d(m)和时间t(h)之间的函数关系;
(2)10月10日17:00该港口水深约为多少?(精确到0.1m)
(3)10月10日这一天该港口共有多少时间水深低于10.3m?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=3x,x∈[-1,1],函数g(x)=[f(x)]2-2af(x)+3.
(Ⅰ)当a=0时,求函数g(x)的值域;
(Ⅱ)若函数g(x)的最小值为h(a),求h(a)的表达式;
(Ⅲ)是否存在实数m,n同时满足下列两个条件:①m>n>3;②当h(a)的定义域为[n,m]时,值域为[n2,m2]?若存在,求出m,n的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.定义A*B、B*C、C*D、D*B分别对应下列图形,

那么下面的图形中,可以表示A*D,A*C的分别是(  )
A.(1)、(2)B.(2)、(3)C.(2)、(4)D.(1)、(4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知曲线C上的点到直线x=-2的距离比它到点F(1,0)的距离大1.
(Ⅰ)求曲线C的方程;
(Ⅱ)过点F(1,0)做斜率为k的直线交曲线C于M,N两点,求证:$\frac{1}{|MF|}$+$\frac{1}{|NF|}$为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,四边形ABCD是梯形,AB∥CD,∠ADC=90°,四边形ADEF是矩形,且平面
ABCD丄平面ADEF,AB=AD=1,DE=CD=2,M是线段CE的中点.
(Ⅰ)求证:AC∥平面DMF;
(Ⅱ)求平面DMF与平面ABCD所成角的余弦值.

查看答案和解析>>

同步练习册答案