精英家教网 > 高中数学 > 题目详情
6.方程$\frac{{x}^{2}}{2+m}$-$\frac{{y}^{2}}{m+1}$=1表示双曲线,求m的取值范围.

分析 由题意可得(2+m)(m+1)>0,求解关于m的一元二次不等式得答案.

解答 解:∵方程$\frac{{x}^{2}}{2+m}$-$\frac{{y}^{2}}{m+1}$=1表示双曲线,
∴(2+m)(m+1)>0,解得m<-2或m>-1.
∴m的取值范围是(-∞,-2)∪(-1,+∞).

点评 本题考查双曲线的简单性质,考查双曲线的标准方程,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=tx,(x∈R).
(1)若t=ax+b,a,b∈R,且-1≤f(-1)≤2,2≤f(1)≤4,求点(a,b)的集合表示的平面区域的面积;
(2)若t=2+$\frac{1}{{x}^{2}-x}$,(x<1且x≠0),求函数f(x)的最大值;
(3)若t=x-a-3(a∈R),不等式b2+c2-bc-3b-1≤f(x)≤a+4(b,c∈R)的解集为[-1,5],求b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列函数满足f(lge)•f(lg$\frac{1}{e}$)<0的是(  )
A.f(x)=2xB.f(x)=lnxC.f(x)=x3D.f(x)=cosx

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.命题“若∠C=90°,则△ABC是直角三角形”与它的逆命题、否命题、逆否命题这四个命题中,真命题的个数是2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左右焦点是F1、F2,P是椭圆上一点,若|PF1|=2|PF2|,则椭圆的离心率的取值范围是(  )
A.$(0,\frac{1}{2})$B.$(\frac{1}{3},\frac{1}{2})$C.$[{\frac{1}{3},1})$D.$[{\frac{1}{2},1})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知f(x)=$\left\{\begin{array}{l}{|x|,x≤1}\\{2-x,x>1}\end{array}\right.$,若不等式f2(x)-mf(x)<0只有一个整数解,则实数m的取值范围是(-2,-1]∪[1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数f(x)=3${\;}^{\sqrt{x-1}}$+$\sqrt{2-x}$,定义域为[1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知圆C:x2+(y-1)2=5,直线l:mx-y+1-m=0
(1)求证:对任意m∈R直线l与圆C总有两个交点A,B;
(2)若定点P(1,1)分弦AB为$|AP|=\frac{1}{2}|PB|$,求此直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数y=$\sqrt{x+8}$+$\sqrt{3-x}$的定义域是[-8,3].

查看答案和解析>>

同步练习册答案