精英家教网 > 高中数学 > 题目详情
10.设三角形三边长为3,4,5,P是三角形内的一点,则P到这三角形三边距离乘积的最大值是$\frac{4}{15}$.

分析 由勾股定理的逆定理推知该三角形为直角三角形.如图,将△ABC的面积转化为三个三角形的面积之和的形式,根据题意列出不等式,通过解不等式求得答案即可.

解答 解:如图,∵三角形三边长为3,4,5,
∴32+42=52
∴△ABC是直角三角形.
设P到长度为3,4,5的三角形三边的距离分别是 x,y,z,三角形的面积为S.
则S=$\frac{1}{2}$(3x+4y+5z)=$\frac{1}{2}$×3×4,即3x+4y+5z=12,
∵12=3x+4y+5z≥3×$\sqrt{3x×4y×5z}$,即2≥$\sqrt{15xyz}$,(当且仅当3x=4y=5z时等号成立),
∴xyz≤$\frac{4}{15}$.
∴P到这三角形三边距离乘积的最大值是$\frac{4}{15}$.

点评 本题考查了点到直线的距离,基本不等式以及三角形的面积.解题的关键是建立数学模型,利用基本不等式的知识求得P到这三角形三边距离乘积的最大值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.若直线l过点(3,4),且它的一个法向量是$\overrightarrow{a}$=(1,2),则直线l的方程为x+2y-11=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在公差不为0的等差数列{an}中,a2+a4=ap+aq,记$\frac{1}{p}$+$\frac{9}{q}$的最小值为m,若数列{bn}满足b1=$\frac{2}{11}$m,则2bn+1-bn•bn+1=1,b1+$\frac{{b}_{2}}{{2}^{2}}$+$\frac{{b}_{3}}{{3}^{2}}$+…+$\frac{{b}_{100}}{{100}^{2}}$=$\frac{n}{n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.定义函数F(a,b)=$\frac{1}{2}$(a+b-|a-b|)(a,b∈R),设函数f(x)=-x2+2x+4,g(x)=x+2(x∈R),函数F(f(x),g(x))的最大值与零点之和为6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知a>0,f(x)=ax2-2x+1+ln(x+1),l是曲线y=f(x)在点P(0,f(0))处的切线,求切线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,三棱柱ABC-A1B1C1中,D、M分别为CC1和A1B的中点,A1D⊥CC1,△AA1B是边长为2的正三角形,A1D=2,BC=1.
(1)证明:MD∥平面ABC;
(2)证明:BC⊥平面ABB1A1
(3)求二面角B-AC-A1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.证明函数f(x)=$\frac{{2}^{x}}{{2}^{x}+\sqrt{2}}$(x∈R)关于($\frac{1}{2}$,$\frac{1}{2}$)对称.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.双曲线x2-$\frac{{y}^{2}}{3}$=1的左右焦点分别为F1,F2,过F2作倾斜角为150°的直线交双曲线于A、B两点,则△F1AB的周长是3+3$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知双曲线C:$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1(a>0,b>0)的两条渐近线与直线y=-1所围成的三角形的面积为4,则双曲线C的离心率为(  )
A.$\sqrt{15}$B.$\frac{\sqrt{17}}{2}$C.$\sqrt{17}$D.$\frac{\sqrt{15}}{2}$

查看答案和解析>>

同步练习册答案