分析 以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出异面直线BP与DQ所成角的余弦值.
解答
解:设正方体ABCD-A1B1C1D1中棱长为3,
以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,
则D(0,0,0),Q(0,1,3),B(3,3,0),P(3,2,3),
$\overrightarrow{BP}$=(0,-1,3),$\overrightarrow{DQ}$=(0,1,3),
设异面直线BP与DQ所成角为θ,
则cosθ=$\frac{|\overrightarrow{BP}•\overrightarrow{DQ}|}{|\overrightarrow{BP}|•|\overrightarrow{DQ}|}$=$\frac{8}{\sqrt{10}•\sqrt{10}}$=$\frac{4}{5}$.
异面直线BP与DQ所成角的余弦值为$\frac{4}{5}$.
故答案为:$\frac{4}{5}$.
点评 本题考查异面直线所成角的余弦值的求法,是基础题,解题时要认真审题,注意向量法的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | $\overrightarrow{{e}_{1}}$=(-2,3),$\overrightarrow{{e}_{2}}$=(4,-6) | B. | $\overrightarrow{{e}_{1}}$=(1,5),$\overrightarrow{{e}_{2}}$=(-2,1) | ||
| C. | $\overrightarrow{{e}_{1}}$=(2,3),$\overrightarrow{{e}_{2}}$=(-1,-$\frac{3}{2}$) | D. | $\overrightarrow{{e}_{1}}$=(3,4),$\overrightarrow{{e}_{2}}$=(-6,-8) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | p∧q | B. | p∨q | C. | ¬p∨q | D. | p∧¬q |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{5}$ | B. | $\frac{5}{2}$ | C. | $\frac{23}{5}$ | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $f(x)=\frac{1}{x}$ | B. | f(x)=2x | C. | f(x)=lgx | D. | f(x)=cosx |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com