精英家教网 > 高中数学 > 题目详情
2.已知命题p:“若直线a与平面α内两条直线垂直,则直线a与平面α垂直”,命题q:“存在两个相交平面垂直于同一条直线”,则下列命题中的真命题为(  )
A.p∧qB.p∨qC.¬p∨qD.p∧¬q

分析 分别判断两个命题的真假,然后根据复合命题真假之间的关系进行判断即可.

解答 解:根据线面垂直的定义知若直线a与平面α内两条相交直线垂直,则直线a与平面α垂直,当两条直线不相交时,结论不成立,即命题p为假命题.
垂直于同一条直线的两个平面是平行的,故命题存在两个相交平面垂直于同一条直线为假命题.,即命题q为假命题.
则¬p∨q为真命题,其余都为假命题,
故选:C.

点评 本题主要考查复合命题真假之间的判断,分别判断命题p,q的真假是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.解关于x的不等式:x${\;}^{lo{g}_{a}x}$>$\frac{{x}^{4}\sqrt{x}}{{a}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.直线l:x+y+1=0的倾斜角为(  )
A.45°B.135°C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某射击运动员进行射击训练,前三次射击在靶上的着弹点A、B、C刚好是边长分别为$5cm,6cm,\sqrt{13}cm$的三角形的三个顶点.
(Ⅰ) 该运动员前三次射击的成绩(环数)都在区间[7.5,8.5)内,调整一下后,又连打三枪,其成绩(环数)都在区间[9.5,10.5)内.现从这6次射击成绩中随机抽取两次射击的成绩(记为a和b)进行技术分析.求事件“|a-b|>1”的概率.
(Ⅱ) 第四次射击时,该运动员瞄准△ABC区域射击(不会打到△ABC外),则此次射击的着弹点距A、B、C的距离都超过1cm的概率为多少?(弹孔大小忽略不计)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,直三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=CC1=2,M,N分别为AC,B1C1的中点.
(Ⅰ)求证:MN∥平面ABB1A1
(Ⅱ)线段CC1上是否存在点Q,使A1B⊥平面MNQ?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在正方体ABCD-A1B1C1D1中,点P、Q分别在A1B1、C1D1上,且A1P=2PB1,C1Q=2QD1,则异面直线BP与DQ所成角的余弦值为$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知直线l经过两条直线2x+3y-14=0和x+2y-8=0的交点,且与直线2x-2y-5=0平行.
(Ⅰ) 求直线l的方程;
(Ⅱ) 求点P(2,2)到直线l的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.命题“若a>2,则a>1”及其逆命题、否命题、逆否命题这四个命题中,真命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.求证:函数f(x)=x+$\frac{a}{x}$(a>0)在($\sqrt{a}$,+∞)上是增函数.

查看答案和解析>>

同步练习册答案