精英家教网 > 高中数学 > 题目详情
18.数列{an}满足Sn=2an+n(n∈N*),则通项公式an=1-2n

分析 数列{an}满足Sn=2an+n(n∈N*),当n=1时,a1=2a1+1,解得a1;当n≥2时,an=Sn-Sn-1,化为:an-1=2(an-1-1),即可得出.

解答 解:∵数列{an}满足Sn=2an+n(n∈N*),
∴当n=1时,a1=2a1+1,解得a1=-1;
当n≥2时,an=Sn-Sn-1=2an+n-(2an-1+n-1),化为:an=2an-1-1,
变形为:an-1=2(an-1-1),
∴数列{an-1}是等比数列,首项为-2,公比为2.
∴an-1=-2n
∴an=1-2n
故答案为:1-2n

点评 本题考查了递推关系的应用、等比数列的通项公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知f(x)=2sinx(cosx+$\sqrt{3}$sinx).
(1)求f(x)的单调递增区间和最小正周期;
(2)在△ABC中,C=$\frac{π}{3}$且c=$\sqrt{3}$,若x=B时,f(x)取得最大值,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=x2+a(b+1)x+a+b(a,b∈R),则“a=0”是“f(x)为偶函数”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图,在正三棱柱ABC-A1B1C1中,$AB=\sqrt{2}B{B_1}$,则AB1与C1B所成角的大小为(  )
A.45°B.60°C.90°D.105°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.直线l:x+y+1=0的倾斜角为(  )
A.45°B.135°C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.过点(1,3)且与直线x+2y-1=0平行的直线方程是x+2y-7=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某射击运动员进行射击训练,前三次射击在靶上的着弹点A、B、C刚好是边长分别为$5cm,6cm,\sqrt{13}cm$的三角形的三个顶点.
(Ⅰ) 该运动员前三次射击的成绩(环数)都在区间[7.5,8.5)内,调整一下后,又连打三枪,其成绩(环数)都在区间[9.5,10.5)内.现从这6次射击成绩中随机抽取两次射击的成绩(记为a和b)进行技术分析.求事件“|a-b|>1”的概率.
(Ⅱ) 第四次射击时,该运动员瞄准△ABC区域射击(不会打到△ABC外),则此次射击的着弹点距A、B、C的距离都超过1cm的概率为多少?(弹孔大小忽略不计)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在正方体ABCD-A1B1C1D1中,点P、Q分别在A1B1、C1D1上,且A1P=2PB1,C1Q=2QD1,则异面直线BP与DQ所成角的余弦值为$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图所示,在平面直角坐际系中有一抛物线y1=ax2,且抛物线经过点(2a-1,1),y轴上有一定点F,其坐标为(0,$\frac{1}{4}$),直线1的解析式为y2=-$\frac{1}{4}$,在抛物线上有一动点P,连接PF,并过点P作PN⊥直线1.
(1)求抛物线的解析式;
(2)求证:PF=PN;
(3)直角坐标系中有一点E(2,5),试问当动点P位于何处B,PE+PF有最小值,并求出最小值.

查看答案和解析>>

同步练习册答案