精英家教网 > 高中数学 > 题目详情
17.已知正四棱台ABCD-A1B1C1D1中,上底面A1B1C1D1边长为1,下底面ABCD边长为2,侧棱与底面所成的角为60°,则异面直线AD1与B1C所成角的余弦值为$\frac{1}{4}$.

分析 连结A1C1,B1D1,交于点O1,连结AC、BD,交于点O,以O为原点,OA为x轴,OB为y轴,OO1为z轴,建立空间直角坐标系,利用向量法能求出异面直线AD1与B1C所成角的余弦值.

解答 解:∵正四棱台ABCD-A1B1C1D1中,上底面A1B1C1D1边长为1,下底面ABCD边长为2,
连结A1C1,B1D1,交于点O1,连结AC、BD,交于点O,
∴OB=$\frac{1}{2}BD=\frac{1}{2}\sqrt{4+4}$=$\sqrt{2}$,${O}_{1}{B}_{1}=\frac{1}{2}{B}_{1}{D}_{1}$=$\frac{1}{2}\sqrt{1+1}$=$\frac{\sqrt{2}}{2}$,
∵侧棱与底面所成的角为60°,∴BB1=2(OB-O1B1)=2($\sqrt{2}-\frac{\sqrt{2}}{2}$)=$\sqrt{2}$,
∴OO1=$\sqrt{(\sqrt{2})^{2}-(\frac{\sqrt{2}}{2})^{2}}$=$\frac{\sqrt{6}}{2}$,
以O为原点,OA为x轴,OB为y轴,OO1为z轴,建立空间直角坐标系,
A($\sqrt{2},0,0$),D1(0,-$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{6}}{2}$),B1(0,$\frac{\sqrt{2}}{2},\frac{\sqrt{6}}{2}$),C(-$\sqrt{2}$,0,0),
$\overrightarrow{A{D}_{1}}$=(-$\sqrt{2}$,-$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{6}}{2}$),$\overrightarrow{{B}_{1}C}$=(-$\sqrt{2}$,-$\frac{\sqrt{2}}{2}$,-$\frac{\sqrt{6}}{2}$),
设异面直线AD1与B1C所成角为θ,
则cosθ=$\frac{|\overrightarrow{A{D}_{1}}•\overrightarrow{{B}_{1}C}|}{|\overrightarrow{A{D}_{1}}|•|\overrightarrow{{B}_{1}C}|}$=$\frac{|2+\frac{1}{2}-\frac{3}{2}|}{\sqrt{2+\frac{1}{2}+\frac{3}{2}}•\sqrt{2+\frac{1}{2}+\frac{3}{2}}}$=$\frac{1}{4}$.
∴异面直线AD1与B1C所成角的余弦值为$\frac{1}{4}$.
故答案为:$\frac{1}{4}$.

点评 本题考查异面直线所成角的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.在正方体ABCD-A1B1C1D1中,点P、Q分别在A1B1、C1D1上,且A1P=2PB1,C1Q=2QD1,则异面直线BP与DQ所成角的余弦值为$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图所示,在平面直角坐际系中有一抛物线y1=ax2,且抛物线经过点(2a-1,1),y轴上有一定点F,其坐标为(0,$\frac{1}{4}$),直线1的解析式为y2=-$\frac{1}{4}$,在抛物线上有一动点P,连接PF,并过点P作PN⊥直线1.
(1)求抛物线的解析式;
(2)求证:PF=PN;
(3)直角坐标系中有一点E(2,5),试问当动点P位于何处B,PE+PF有最小值,并求出最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.若y=2asin(2x-$\frac{π}{3}$)+b,x∈[0,$\frac{π}{2}$]的最大值是1,最小值是-5,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.求证:函数f(x)=x+$\frac{a}{x}$(a>0)在($\sqrt{a}$,+∞)上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.若f(x)=sin(2ωx-$\frac{π}{6}$)的图象关于直线x=$\frac{π}{6}$对称,其中ω∈(-$\frac{1}{2}$,$\frac{5}{2}$).
(1)求f(x)的解析式;
(2)已知x∈[-$\frac{π}{2}$,π],求f(x)的增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=asinx-$\sqrt{3}$cosx的一条对称轴为x=-$\frac{π}{6}$,且f(x1)•f(x2)=-4,则下列结论正确的是(  )
A.a=±1B.f(x1+x2)=0
C.|x1+x2|的最小值为$\frac{2π}{3}$D.f(x)的最小正周期为2|x1-x2|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知直线l过双曲线$\frac{{x}^{2}}{4}$-y2=1的右焦点,且与双曲线仅有一个公共交点,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.集合A={x|y=lg(-x2+2x)},B={x||x|≤1},则A∩B=(  )
A.{x|1≤x≤2}B.{x|0<x≤1}C.{x|-1≤x≤0}D.{x|x≤2}

查看答案和解析>>

同步练习册答案