精英家教网 > 高中数学 > 题目详情
17.已知命题p:?x0∈R,sinx0=$\sqrt{2}$;命题q:?x∈R,x2-x+1>0.则下列结论正确的是(  )
A.命题是p∨q假命题B.命题是p∧q真命题
C.命题是(?p)∨(?q)真命题D.命题是(?p)∧(?q)真命题

分析 首先判断命题p和q的真假,再利用真值表对照各选项选择.命题p的真假有正弦函数的有界性判断,命题q的真假结合二次函数的图象只需看△.

解答 解:命题p:因为-1≤sinx≤1,故不存在x∈R,使sinx=$\sqrt{2}$,命题p为假;
命题q:△=1-4=-3<0,故?x∈R,都有x2+x+1>0为真.
∴,命题是p∨q是真,命题“p∧q”是假命题,命题是(?p)∨(?q)真命题,命题是(?p)∧(?q)假命题.
故选:C

点评 本题考查命题和复合命题真假的判断、正弦函数的有界性及二次函数恒成立等知识,属基本题型的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.设函数 f (x)=(x+a)n,其中$n=6{∫}_{0}^{\frac{π}{2}}cosxdx,\frac{f′(0)}{f(0)}=-3$,则 f (x)的展开式中的x4系数为60.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在△ABC中,三个内角A,B,C的对边分别为a,b,c,其中c=2,且$\frac{cosA}{cosB}$=$\frac{b}{a}$=$\frac{\sqrt{3}}{1}$.
(Ⅰ)求a,b,C.
(Ⅱ)如右图,设圆O过A,B,C三点,点P位于劣弧$\widehat{AC}$上,记∠PAB=θ,求△PAC面积最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设f(x)为定义在R上的奇函数,且是周期为4的周期函数,f(1)=1,则f(-1)+f(8)=(  )
A.-2B.-1C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,平面ABDE⊥平面ABC,AC⊥BC,AC=BC=4,四边形ABDE是直角梯形,BD∥AE,BD⊥BA,AE=2BD=4,P、M分别为CE,AB的中点.
(Ⅰ)证明:PD∥平面ABC;
(Ⅱ)是否在EM上存在一点N,使得PN⊥平面ABDE.若存在,请指出点N的位置,并加以证明;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图1,△ABC,AB=AC=4,$∠BAC=\frac{2π}{3}$,D为BC的中点,DE⊥AC,沿DE将△CDE折起至△C′DE,如图2,且C'在面ABDE上的投影恰好是E,连接C′B,M是C′B上的点,且$C'M=\frac{1}{2}MB$.
(1)求证:AM∥面C′DE;
(2)求三棱锥C′-AMD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知二次函数f(x)=x2-2ax+1在区间(2,3)上是单调函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设公比为正数的等比数列{an}的前n项和为Sn,已知a3=8,S2=48.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足bn=4log2an(n∈N*),试求数列{bn}前n项和Tn的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设{an}为递减的等比数列,其中q为公比,前n项和Sn,且{a1,a2,a3}⊆{-4,-3,-2,0,1,2,3,4},则$\frac{S_8}{{1-{q^4}}}$=$\frac{17}{2}$.

查看答案和解析>>

同步练习册答案