分析 求定积分得到n值,再由$\frac{f′(0)}{f(0)}=-3$求得a,写出二项展开式的通项,由x的指数为4求得r,则答案可求.
解答 解:由$n=6{∫}_{0}^{\frac{π}{2}}cosxdx,\frac{f′(0)}{f(0)}=-3$,得
$n=6sinx{|}_{0}^{\frac{π}{2}}=6$,$\frac{6{a}^{5}}{{a}^{6}}=-3$,a=-2.
∴f (x)=(x-2)6,
由${T}_{r+1}={C}_{6}^{r}{x}^{6-r}(-2)^{r}$,令6-r=4,得r=2.
∴f (x)的展开式中的x4系数为$(-2)^{2}•{C}_{6}^{2}=60$.
故答案为:60.
点评 本题考查定积分,考查了基本初等函数的导数公式,考查了二项式的展开式,是基础题.
科目:高中数学 来源: 题型:选择题
| A. | 2$\sqrt{2}$ | B. | 3$\sqrt{2}$ | C. | 4$\sqrt{2}$ | D. | 5$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ?x≤1,logax>0 | B. | ?x>1,loga≤0 | C. | ?x≤1,logax>0 | D. | ?x>1,logax≤0 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,2] | B. | [-2,2) | C. | [0,2) | D. | [2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 命题是p∨q假命题 | B. | 命题是p∧q真命题 | ||
| C. | 命题是(?p)∨(?q)真命题 | D. | 命题是(?p)∧(?q)真命题 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com