精英家教网 > 高中数学 > 题目详情
19.在数列{an}中,Sn为它的前n项和,已知a2=3,a3=7,且数列{an+1}是等比数列,则a1=1,an=2n-1,Sn2n+1-2-n.

分析 利用a2=3,a3=7,且数列{an+1}是等比数列,可得a1+1=2,所以a1=1,确定an+1=2n,可得an=2n-1,利用等比数列的求和公式,即可得出结论.

解答 解:因为a2=3,a3=7,且数列{an+1}是等比数列,
所以a1+1=2,所以a1=1,
an+1=2n,所以an=2n-1,
所以Sn=$\frac{2(1-{2}^{n})}{1-2}$-n=2n+1-2-n.
故答案为:1,2n-1,2n+1-2-n.

点评 本题考查等比数列的通项与求和,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=2x3-9x2+12x-5
(1)求函数f(x)的单调区间;
(2)求函数f(x)的极值;
(3)求函数f(x)在区间[0,3]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设复数z1,z2满足条件|z1|=1,|z2|=2,则|z1-z2|的范围是[1,3].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设函数 f (x)=(x+a)n,其中$n=6{∫}_{0}^{\frac{π}{2}}cosxdx,\frac{f′(0)}{f(0)}=-3$,则 f (x)的展开式中的x4系数为60.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知一几何体的三视图如图所示.
(Ⅰ)求该几何体的体积;
(Ⅱ)求该几何体的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在△ABC中,点D在线段BC的延长线上,且$\overrightarrow{BC}$=$\overrightarrow{CD}$,点O在线段CD上(点O与点C,D不重合),若$\overrightarrow{AO}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$,则x的取值范围是(  )
A.(-1,0)B.(0,$\frac{1}{3}$)C.(0,1)D.(-$\frac{1}{3}$,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在△ABC中,内角A,B,C所对应的边分别为a,b,c,若bsinA-$\sqrt{3}$acosB=0,且b2=ac,则$\frac{b}{a+c}$的值为
(  )
A.$\frac{\sqrt{2}}{2}$B.$\sqrt{2}$C.2D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在△ABC中,三个内角A,B,C的对边分别为a,b,c,其中c=2,且$\frac{cosA}{cosB}$=$\frac{b}{a}$=$\frac{\sqrt{3}}{1}$.
(Ⅰ)求a,b,C.
(Ⅱ)如右图,设圆O过A,B,C三点,点P位于劣弧$\widehat{AC}$上,记∠PAB=θ,求△PAC面积最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知二次函数f(x)=x2-2ax+1在区间(2,3)上是单调函数,求实数a的取值范围.

查看答案和解析>>

同步练习册答案