精英家教网 > 高中数学 > 题目详情
11.在△ABC中,内角A,B,C所对应的边分别为a,b,c,若bsinA-$\sqrt{3}$acosB=0,且b2=ac,则$\frac{b}{a+c}$的值为
(  )
A.$\frac{\sqrt{2}}{2}$B.$\sqrt{2}$C.2D.$\frac{1}{2}$

分析 已知等式bsinA-$\sqrt{3}$acosB=0,利用正弦定理化简,整理求出tanB的值,进而确定出B的度数,把b2=ac利用正弦定理化简,将sinB的值代入求出sinAsinC的值,再利用积化和差公式变形将cos(A+C)=-cosB代入得到A=C,确定出三角形为等边三角形,即可求出所求式子的值.

解答 解:把bsinA-$\sqrt{3}$acosB=0,利用正弦定理化简得:sinAsinB-$\sqrt{3}$sinAcosB=0,
即sinAsinB=$\sqrt{3}$sinAcosB,
∵A为△ABC内角,∴sinA≠0,
∴sinB=$\sqrt{3}$cosB,即tanB=$\sqrt{3}$,
∴B=$\frac{π}{3}$,
把b2=ac,利用正弦定理化简得:sin2B=sinAsinC,即sinAsinC=$\frac{3}{4}$,
整理得:-$\frac{1}{2}$[cos(A+C)-cos(A-C)]=$\frac{1}{4}$+$\frac{1}{2}$cos(A-C)=$\frac{3}{4}$,即cos(A-C)=1,
∴A-C=0,即A=C=$\frac{π}{3}$,
∴△ABC为等边三角形,即a=b=c,
则$\frac{b}{a+c}$=$\frac{1}{2}$.

点评 此题考查了正弦、余弦定理,积化和差公式,以及等边三角形的判定与性质,熟练掌握定理及公式是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.给出下列两个推理:
①在△ABC中,若D为BC的中点,则$\overrightarrow{AD}$=$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AC}$),由此推测:在空间四面体ABCD中,若M为△BCD的重心,则$\overrightarrow{AM}$=$\frac{1}{3}$($\overrightarrow{AB}$+$\overrightarrow{AC}$+$\overrightarrow{AD}$).
②无根不循环小数都是无理数,因为e=2.7182818459045…是无限不循环小数,所以e是无理数.
对于上述两个推理,下列判断正确的是(  )
A.①是类比推理,②是归纳推理B.①是类比推理,②是演绎推理
C.①是归纳推理,②是演绎推理D.①是演绎推理,②是类比推理

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知两点A(-m,0),B(m,0)(m>0),如果在直线3x+4y+25=0上存在点P,使得∠APB=90°,则m的取值范围是[5,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在数列{an}中,Sn为它的前n项和,已知a2=3,a3=7,且数列{an+1}是等比数列,则a1=1,an=2n-1,Sn2n+1-2-n.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在区间[-π,π]内随机取两个数分别记为m,n,则使得函数f(x)=$\frac{1}{3}$x3+mx2-(n2-π)x+1有极值点的概率为$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设集合A={x||x|≤2},B={y|y=2x,x∈R},则A∩B=(  )
A.(0,2]B.[-2,2)C.[0,2)D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.二项式(2x2-$\frac{1}{x}$)n的展开式中第3项与第4项的二项式系数相等,则展开式的第3项的系数为80.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设f(x)=$\left\{\begin{array}{l}{{2}^{x+1}(x≥0)}\\{f(x+1)+2(x<0)}\end{array}\right.$,则f(-$\frac{2015}{2}$)=2$\sqrt{2}$+2016.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.某程序框图如图所示,则输出的S的值是$\frac{25}{12}$.

查看答案和解析>>

同步练习册答案