精英家教网 > 高中数学 > 题目详情
6.一气球制造公司生产的气球95%是合格的(充气后不爆破),假设在你的生日聚会上准备了20个该公司生产的气球.
(1)这些气球充气后没有一个爆破的概率是多少?
(2)恰好有两个气球爆破的概率是多少?
(3)超过三个气球爆破的概率是多少?

分析 (1)由题意可得每个合格的概率为95%,20个气球充气后没有一个爆破即全部合格,由独立事件的概率公式可得;
(2)由独立重复试验的概率公式可得恰好有两个气球爆破的概率为P=${C}_{20}^{2}$×0.9518×0.052,化简可得;
(3)同(1)可得所求概率为P=1-0.9520-${C}_{20}^{1}$×0.9519×0.05-${C}_{20}^{2}$×0.9518×0.052-${C}_{20}^{3}$×0.9517×0.053,化简可得.

解答 解:(1)由题意可得气球共20个,每个合格的概率为95%,
这20个气球充气后没有一个爆破即全部合格,
∴所求概率P=0.9520
(2)恰好有两个气球爆破的概率为P=${C}_{20}^{2}$×0.9518×0.052=0.475×0.9518
(3)超过三个气球爆破的概率为P=1-0.9520-${C}_{20}^{1}$×0.9519×0.05-${C}_{20}^{2}$×0.9518×0.052-${C}_{20}^{3}$×0.9517×0.053
=1-0.9520-0.9519-0.475×0.9518-0.1425×0.9517

点评 本题考查互斥事件的概率公式,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\frac{ax+b}{{x}^{2}+c}$是定义在R上的奇函数,且当x=1时,f(x)取最大值1.
(1)求出a,b,c的值并写出f(x)的解析式;
(2)若x1=$\frac{1}{2}$,xn+1=f(xn),求证:$\frac{({x}_{1}-{x}_{2})^{2}}{{x}_{1}{x}_{2}}$+$\frac{({x}_{2}-{x}_{3})^{2}}{{x}_{2}{x}_{3}}$+…+$\frac{({x}_{n}-{x}_{n+1})^{2}}{{x}_{n}{x}_{n+1}}$$<\frac{5}{16}$;
(3)若x1∈(0,1),xn+1=f(xn),试比较xn+1与xn的大小并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,四棱锥P-ABCD中,PD⊥平面ABCD,AB∥DC,AD⊥DC,且CD=2,AB=AD=1,∠BCD=45°
(1)若点M是PD的中点,证明:AM∥平面PBC
(2)若△PBC的面积为$\sqrt{2}$,求二面角B-PC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设函数f(x)=ex-1
(1)当a>ln2-1且x>0时,证明:f(x)>x2-2ax
(2)若f(x)≥x2-ax在(0,1)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设数列{an}的首项为2,且$\frac{a_{n+1}}{n+2}$-$\frac{a_{n}}{n}$=n+1,n∈N*
(1)求a2,a3
(2)求an
(3)若数列{$\frac{n}{{a}_{n}}$}的前n项和为Sn,求证:Sn<ln(n+1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=x3+ax+b(a,b∈R).
(1)若f(x)的图象在-2≤x≤2部分在x轴的上方,且在点(2,f(2))处的切线与直线9x-y+5=0平行,试求b的取值范围;
(2)当x1,x2∈[0,$\frac{\sqrt{3}}{3}$],且x1≠x2,不等式|f(x1)-f(x2)|<|x1-x2|恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.A、B两地相距30千米,甲比乙每小时多走1千米,从A到B所需时间甲比乙少1小时,甲、乙两人每小时各走多少千米?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.第十二届《财富》全球论坛将于2013年6月在成都举行,为了使大会圆满举行,组委会在大学生中招聘了6名志愿者,其中甲大学有2名,乙大学有3名,丙大学有1名,若将他们安排在连续六天的服务工作中,每人一天,那么同一所大学的志愿者不安排在相邻两天服务的概率为(  )
A.$\frac{1}{12}$B.$\frac{1}{10}$C.$\frac{2}{15}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.命题“?x∈R,x2-x+1>0”的否定是(  )
A.?x0∈R,x02-x0+1≤0B.?x0∈R,x02-x0+1≤0
C.?x0R,x02-x0+1≤0D.?x0∈R,x02-x0+1≤0

查看答案和解析>>

同步练习册答案