精英家教网 > 高中数学 > 题目详情
18.A、B两地相距30千米,甲比乙每小时多走1千米,从A到B所需时间甲比乙少1小时,甲、乙两人每小时各走多少千米?

分析 设设乙每小时走x千米,则甲每小时走x+1千米,(x>0),建立方程关系,解方程即可.

解答 解:设乙每小时走x千米,则甲每小时走x+1千米,(x>0),
则甲所用的时间为$\frac{30}{x+1}$小时,乙所用的时间为$\frac{30}{x}$小时,
则满足$\frac{30}{x}$-$\frac{30}{x+1}$=1,
即30(x+1)-30x=x(x+1),
即x2+x-30=0,
则(x-5)(x+6)=0,
解得x=5或x=-6(舍).
此时甲每小时走6千米,乙每小时走5千米.

点评 本题主要考查函数方程的应用问题,设出对应变量,建立方程关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\left\{\begin{array}{l}{sinx+\sqrt{3}cosx,0≤x≤π}\\{|co{s}^{2}x-si{n}^{2}x|,-π≤x<0}\end{array}\right.$.
(1)求函数f(x)的值域与单调递增区间;
(2)若函数g(x)=f(x)-m至少有两个零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.要将甲、乙两种大小不同的钢板截成A、B两种规格,每张钢板可同时截得A、B两种规格的小钢板的块数如表所示:
已知库房中现有甲乙两种钢板的数量分别为5张和10张,市场急需A、B两种规格的成品数分别为15块和27块.
规格类型
钢板类型
AB
21
13
(1)问各截两种钢板多少张可得到所需的成品数,且使所用的两种钢板的总张数最少?
(2)有5个同学对线性规划知识了解不多,但是画出了可行域,他们每个人都在可行域的整点中随意取出一解,求恰好有2个人取到最优解的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.一气球制造公司生产的气球95%是合格的(充气后不爆破),假设在你的生日聚会上准备了20个该公司生产的气球.
(1)这些气球充气后没有一个爆破的概率是多少?
(2)恰好有两个气球爆破的概率是多少?
(3)超过三个气球爆破的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求三角方程cos2πx-3cosπx+2=0,x∈[0,100]的所有整数解的和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知数列{an}满足a1=8,a2=0,a3=-7,且数列{an+1-an}为等差数列,则{an}的最小项为(  )
A.-30B.-29C.-28D.-27

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设平面向量$\overrightarrow{a}$=(cosx,sinx),$\overrightarrow{b}$=(cosx+2$\sqrt{3}$,sinx),$\overrightarrow{c}$=(sinα,cosα),x∈R.
(1)若$\overrightarrow{a}⊥\overrightarrow{c}$,求cos(2x+2α)的值;
(2)若α=0,求函数f(x)=$\overrightarrow{a}•(\overrightarrow{b}-2\overrightarrow{c})$的最大值,并求出相应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图所示,在三棱柱ABC-A1B1C1中,A1A⊥斜面ABC,点A在平面A1BC中的投影为线段A1B上的点D.
(1)求证:BC⊥A1B;
(2)点P为AC上一点,若AP=PC,AD=$\sqrt{3}$,AB=BC=2,求三棱锥P-A1BC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设△ABC的内角A,B,C所对边的长分别a,b,c,若b+c=2a,3sinA=5sinB,则角C=(  )
A.$\frac{π}{3}$B.$\frac{3π}{4}$C.$\frac{5π}{6}$D.$\frac{2π}{3}$

查看答案和解析>>

同步练习册答案