分析 作图,分别求得∠ABC,∠ACB和∠BAC,然后利用正弦定理求得AC,最后在直角三角形ACD中求得AD.
解答
解:如图,
依题意知∠ABC=30°+15°=45°,∠ACB=180°-60°-15°=105°,
∴∠BAC=180°-45°-105°=30°,
由正弦定理知$\frac{BC}{sin∠BAC}$=$\frac{AC}{sin∠ABC}$,
∴AC=$\frac{BC}{sin∠BAC}$•sin∠ABC=$\frac{10\sqrt{6}}{\frac{1}{2}}$×$\frac{\sqrt{2}}{2}$=20$\sqrt{3}$(m),
在Rt△ACD中,AD=$\frac{\sqrt{3}}{2}$•AC=$\frac{\sqrt{3}}{2}$×20$\sqrt{3}$=30(m),
即旗杆的高度为30m.
故答案为:30m.
点评 本题主要考查了解三角形的实际应用.结合了正弦定理等基础知识,考查了学生分析和推理的能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 有可能平行 | B. | 有可能垂直 | C. | 一定平行 | D. | 不一定异面 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com