精英家教网 > 高中数学 > 题目详情
2.数列{an}前n项和为Sn,若${a_n}={2^{n-1}}$,则$C_n^1{S_1}+C_n^2{S_2}+…+C_n^n{S_n}$等于(  )
A.3n-2nB.2n-3nC.5n-2nD.3n-4n

分析 利用等比数列的前n项和公式可得Sn=2n-1.再利用二项式定理即可得出.

解答 解:Sn=$\frac{{2}^{n}-1}{2-1}$=2n-1.
则$C_n^1{S_1}+C_n^2{S_2}+…+C_n^n{S_n}$=${∁}_{n}^{1}•2+{∁}_{n}^{2}•{2}^{2}$+…+${∁}_{n}^{n}•{2}^{n}$-$({∁}_{n}^{1}+{∁}_{n}^{2}+…+{∁}_{n}^{n})$=(2+1)n-1-[(1+1)n-1]=3n-2n
故选:A.

点评 本题考查了等比数列的前n项和公式、二项式定理性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.小毕喜欢把数描绘成沙滩上的小石子,他照如图所示摆成了正三角形图案,并把每个图案中总的石子个数叫做“三角形数”,记为Tn,则$\frac{1}{2{T}_{1}}$+$\frac{1}{2{T}_{2}}$+$\frac{1}{2{T}_{3}}$+…+$\frac{1}{2{T}_{2015}}$=$\frac{2015}{2016}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知离散型随机变量X的分布列为P(X=1)=$\frac{3}{5}$,P(X=2)=$\frac{3}{10}$,P(X=3)=$\frac{1}{10}$,则X的数学期望E(X)=(  )
A.$\frac{3}{2}$B.2C.$\frac{5}{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知a+b+c>0,ab+bc+ca>0,abc>0,用反证法证明:a,b,c>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=2x-$\frac{a}{x}$的定义域为(0,1](其中a是实数)
(1)当a=-1时,求函数y=f(x)的值域;
(2)若函数y=f(x)在定义域上是减函数,求实数a的取值范围;
(3)求不等式f(x)≥0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知a∈R,函数f(x)=(-x2+ax)ex,(x∈R,e为自然对数的底数)
(1)当a=2时,求函数f(x)的单调递增区间.
(2)函数f(x)是否为R上的单调函数,若是,求出a的取值范围;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$bx2+cx+d在(0,1)内既有极大值又有极小值,求c2+c(1+b)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知tanα=2,求:
(1)$\frac{2cosα+sinα}{sinα-cosα}$
(2)sin2α-3sinαcosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.抛物线y2=2px(p>0)的焦点为F,准线为l,A,B是抛物线上的两个动点,且满足∠AFB=$\frac{2π}{3}$.设线段AB的中点M在l上的投影为N,则$\frac{|MN|}{|AB|}$的最大值是$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

同步练习册答案