精英家教网 > 高中数学 > 题目详情
10.已知a+b+c>0,ab+bc+ca>0,abc>0,用反证法证明:a,b,c>0.

分析 假设a,b,c不全是正数,这时需要逐个讨论a,b,c不是正数的情形.但注意到条件的特点(任意交换a,b,c的位置不改变命题的条件),我们只要讨论其中一个数(例如a),其他两个数(例如b,c)与这种情形类似.

解答 证明:设a<0,∵abc>0,∴bc<0.
又由a+b+c>0,则b+c>-a>0
∴ab+bc+ca=a(b+c)+bc<0     
与题设矛盾
又:若a=0,则与abc>0矛盾,
∴必有a>0,
同理可证:b>0,c>0.

点评 本题是一个全部性问题,要证的结论与条件之间的联系不明显,直接由条件推出结论的线索不够清晰.于是考虑采用反证法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.在△ABC的三内角A、B、C的对应边分别为a,b,c,当a2+c2≥b2+ac时,角B的取值范围为(0°,60°].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=|x-1|+2|x+1|,解不等式f(x)>5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知二次函数f(x)的图象经(0,0),(1,2),(-1,-4)三点,
(1)求该二次函数的解析式和最值;
(2)已知函数在(t-1,+∞)上为减函数,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在所有两位数(10~99)中,任取一个数,能被2或3整除的概率是(  )
A.$\frac{5}{6}$B.$\frac{4}{5}$C.$\frac{2}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.用分析法证明不等式:设x≥5,求证:$\sqrt{x-2}$-$\sqrt{x-3}$<$\sqrt{x-4}$-$\sqrt{x-5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.数列{an}前n项和为Sn,若${a_n}={2^{n-1}}$,则$C_n^1{S_1}+C_n^2{S_2}+…+C_n^n{S_n}$等于(  )
A.3n-2nB.2n-3nC.5n-2nD.3n-4n

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在等差数列{an}中,a2=3,a3+a7=14,则公差d=$\frac{4}{3}$,an=$\frac{4}{3}n+\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设M为平行四边形ABCD的对角线的交点,O为平行四边形ABCD所在平面内任意一点,则$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$+$\overrightarrow{OD}$=$4\overrightarrow{OM}$.

查看答案和解析>>

同步练习册答案