分析 (1)根据向量的数量积运算,以及余弦定理和同角的三角函数的关系即可求出,
(2)根据余弦定理b2=a2+c2-2accosB以及基本不等式即可求出.
解答 解:(1)$\overrightarrow{m}$=(a2+c2-b2,ac),$\overrightarrow{n}$=(tanB,-$\sqrt{3}$),$\overrightarrow{m}$$⊥\overrightarrow{n}$,
∴$\overrightarrow{m}$•$\overrightarrow{n}$=(a2+c2-b2)tanB-3ac=0,
∴tanBcosB=$\frac{\sqrt{3}}{2}$,
∴sinB=$\frac{\sqrt{3}}{2}$,
∴B=$\frac{π}{3}$,
(2)由余弦定理,得b2=a2+c2-2accosB,即4=a2+c2-2ac×$\frac{1}{2}$,
∴ac+4=a2+c2≥2ac,即ac≤4,当且仅当a=c=2时取等号,
则ac的最大值为4,
∴(a+c)2=a2+c2+2ac=4+3ac≤16,又a+c>b=2,
则a+c的取值范围是(2,4].
点评 本题考查了向量的坐标运算以及向量的数量积以及余弦定理和基本不等式,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$,$\frac{π}{6}$ | B. | $\sqrt{3}$,$\frac{π}{3}$ | C. | 2$\sqrt{3}$,$\frac{π}{6}$ | D. | 2$\sqrt{3}$,$\frac{π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2${\;}^{-\frac{n-3}{2}}$ | B. | 2${\;}^{\frac{n-3}{2}}$ | C. | 2${\;}^{\frac{n-1}{2}}$ | D. | 2${\;}^{\frac{n}{2}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com