精英家教网 > 高中数学 > 题目详情
10.三棱锥P-ABC三条侧棱两两垂直,三个侧面面积分别为$\frac{{\sqrt{2}}}{2}$,$\frac{{\sqrt{3}}}{2}$,$\frac{{\sqrt{6}}}{2}$,则该三棱锥的外接球表面积为6π.

分析 三棱锥P-ABC的三条侧棱PA、PB、PC两两互相垂直,它的外接球就是它扩展为长方体的外接球,求出长方体的对角线的长,就是球的直径,然后求球的表面积.

解答 解:三棱锥P-ABC的三条侧棱PA、PB、PC两两互相垂直,
它的外接球就是它扩展为长方体的外接球,
设PA=a,PB=b,PC=c,
则$\frac{1}{2}$ab=$\frac{{\sqrt{2}}}{2}$,$\frac{1}{2}$bc=$\frac{{\sqrt{3}}}{2}$,$\frac{1}{2}$ca=$\frac{{\sqrt{6}}}{2}$,
解得,a=$\sqrt{2}$,b=1,c=$\sqrt{3}$.
则长方体的对角线的长为$\sqrt{6}$.
所以球的直径是$\sqrt{6}$,半径长R=$\frac{\sqrt{6}}{2}$,
则球的表面积S=4πR2=6π,
故答案为:6π.

点评 本题考查球的表面积,几何体的外接球,考查空间想象能力,计算能力,是基础题.将三棱锥扩展为长方体是本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.函数$y=\frac{{\sqrt{1-x}}}{x}$的定义域为(  )
A.(-∞,0)∪(0,1]B.(0,1]C.(-∞,1]D.(-∞,0)∪(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=2cos(ωx+$\frac{π}{6}$)(ω>0)满足f($\frac{8π}{3}$)=f($\frac{14π}{3}$),且在区间($\frac{8π}{3}$,$\frac{14π}{3}$)内有最大值但没有最小值,给出下列四个命题:
p1:f(x)在区间[0,2π]上单调递减;
p2:f(x)的最小正周期是4π;
p3:f(x)的图象关于直线x=$\frac{π}{2}$对称;
p4:f(x)的图象关于点($\frac{4π}{3}$,0)对称.
其中的真命题是p2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=loga(x-3)+5(a>0且a≠1)的图象过定点P,角α的始边与x轴正半轴重合且终边过点P,则$\frac{cos(\frac{11π}{2}-α)sin(\frac{9π}{2}+α)}{cos(\frac{π}{2}+α)sin(-π-α)}$的值为(  )
A.$\frac{3}{5}$B.$\frac{2}{5}$C.$\frac{4}{5}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.g(x)的定义域为R,且满足g(x)+xg′(x)-g′(x)<0,则y=g(x)的零点个数为(  )
A.1B.0C.2D.0或2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数$f(x)=\left\{\begin{array}{l}{log_2}({1-x})+1,-1≤x<k\\{x^2}-2x+1,k≤x≤a\end{array}\right.$,若存在实数k使函数f(x)的值域为[0,2],则实数a的取值范围为[$\frac{1}{2}$,1+$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.圆C过点A(6,4),B(1,-1),且圆心在直线l:x-5y+7=0上.
(1)求圆C的方程;
(2)P为圆C上的任意一点,定点Q(7,0),求线段PQ中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数y=ax-cosx为R上的减函数的a的范围为a<-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)=$\frac{1-x}{ax}$+lnx在[1,10]上存在增区间,则正实数a的取值范围为($\frac{1}{10}$,1].

查看答案和解析>>

同步练习册答案