某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:
,其中
是仪器的月产量.
(注:总收益=总成本+利润)
(1)将利润
表示为月产量
的函数;
(2)当月产量
为何值时,公司所获利润最大?最大利润为多少元?
科目:高中数学 来源: 题型:解答题
如图,建立平面直角坐标系xOy,x轴在地平面上,y轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程y=kx-
(1+k2)x2(k>0)表示的曲线上,其中k与发射方向有关.炮的射程是指炮弹落地点的横坐标.![]()
(1)求炮的最大射程;
(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a不超过多少时,炮弹可以击中它?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数
和函数
,其中
为参数,且满足
.
(1)若
,写出函数
的单调区间(无需证明);
(2)若方程
在
上有唯一解,求实数
的取值范围;
(3)若对任意
,存在
,使得
成立,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
有一种新型的洗衣液,去污速度特别快.已知每投放k(1≤k≤4,且k∈R)个单位的洗衣液在一定量水的洗衣机中,它在水中释放的浓度y(克/升)随着时间x(分钟)变化的函数关系式近似为y=k·f(x),其中f(x)=
若多次投放,则某一时刻水中的洗衣液浓度为每次投放的洗衣液在相应时刻所释放的浓度之和.根据经验,当水中洗衣液的浓度不低于4(克/升)时,它才能起到有效去污的作用.
(1)若只投放一次k个单位的洗衣液,两分钟时水中洗衣液的浓度为3(克/升),求k的值;
(2)若只投放一次4个单位的洗衣液,则有效去污时间可达几分钟?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设函数f(x)=ax2+bx+c,且f(1)=-
,3a>2c>2b,求证:
(1)a>0,且-3<
<-
;
(2)函数f(x)在区间(0,2)内至少有一个零点;
(3)设x1,x2是函数f(x)的两个零点,则
≤|x1-x2|<
.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某公司试销一种成本单价为500元/件的新产品,规定试销时销售单价不低于成本单价,又不高于800元/件.经试销调查,发现销售量
(件)与销售单价
(元/件)可近似看作一次函数
的关系(如图所示). ![]()
(1)根据图象,求一次函数
的表达式;
(2)设公司获得的毛利润(毛利润=销售总价—成本总价)为
元. 试用销售单价
表示毛利润
并求销售单价定为多少时,该公司获得最大毛利润?最大毛利润是多少?此时的销售量是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com