设函数f(x)=ax2+bx+c,且f(1)=-,3a>2c>2b,求证:
(1)a>0,且-3<<-;
(2)函数f(x)在区间(0,2)内至少有一个零点;
(3)设x1,x2是函数f(x)的两个零点,则≤|x1-x2|<.
科目:高中数学 来源: 题型:解答题
已知函数f(x)=在区间[-1,1]上是增函数.
(1)求实数a的值组成的集合A;
(2)设x1、x2是关于x的方程f(x)=的两个相异实根,若对任意a∈A及t∈[-1,1],不等式m2+tm+1≥|x1-x2|恒成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:,其中是仪器的月产量.
(注:总收益=总成本+利润)
(1)将利润表示为月产量的函数;
(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某厂生产某种产品的年固定成本为250万元,每生产x千件,需另投入成本为C(x),当年产量不足80千件时,C(x)=x2+10x(万元).当年产量不小于80千件时,C(x)=51x+-1450(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.
(1)写出年利润L(x)(万元)关于年产量x(千件)的函数解析式.
(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f(x)=-x+log2.
(1)求f()+f(-)的值.
(2)当x∈(-a,a],其中a∈(0,1),a是常数时,函数f(x)是否存在最小值?若存在,求出f(x)的最小值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知二次函数f(x)=x2+(2a-1)x+1-2a.
(1)判断命题“对于任意的a∈R(R为实数集),方程f(x)=1必有实数根”的真假,并写出判断过程.
(2)若y=f(x)在区间(-1,0)及(0,)内各有一个零点,求实数a的范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某兴趣小组要测量电视塔AE的高度H(单位:m).如示意图,垂直放置的标杆BC的高度h=4 m,仰角∠ABE=α,∠ADE=β.
(1)该小组已测得一组α,β的值,算出了tan α=1.24,tan β=1.20,请据此算出H的值;
(2)该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距离d(单位:m),使α与β之差较大,可以提高测量精度.若电视塔的实际高度为125 m,试问d为多少时,α-β最大?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某市对排污水进行综合治理,征收污水处理费,系统对各厂一个月内排出的污水量吨收取的污水处理费元,运行程序如下所示:请写出y与m的函数关系,并求排放污水150吨的污水处理费用.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com