精英家教网 > 高中数学 > 题目详情

(1)解方程:
(2)已知命题命题且命题的必要条件,求实数m的取值范围

(1);(2).

解析试题分析:(1)解对数方程,一般把利用对数的运算法则把对数方程变形为,转化为代数方程,但解题过程中要注意对数函数的定义域,即;(2)这类问题的解决,首先要把两个命题化简,本题中命题化为:,命题是命题的必要条件,说明由命题成立可推导出命题也成立,若把命题成立时的变量的集合分别记为,从集合角度,即有,由此我们可得出关于的不等关系,从而求出的取值范围.
试题解析:(1)解:由原方程化简得    ,
即:
所以,,解得.
(2)解:
由于命题的必要条件,所以,所以.
考点:(1)对数方程;(2)充分与必要条件.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知.
(1)当,时,若不等式恒成立,求的范围;
(2)试判断函数内零点的个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求函数在区间上的最小值;
(2)设,其中,判断方程在区间 上的解的个数(其中为无理数,约等于且有).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

据市场分析,广饶县驰中集团某蔬菜加工点,当月产量在10吨至25吨时,月生产总成本(万元)可以看成月产量(吨)的二次函数.当月产量为10吨时,月总成本为20万元;当月产量为15吨时,月总成本最低为17.5万元.
(1)写出月总成本(万元)关于月产量(吨)的函数关系;
(2)已知该产品销售价为每吨1.6万元,那么月产量为多少时,可获最大利润;
(3)当月产量为多少吨时, 每吨平均成本最低,最低成本是多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了保护环境,某工厂在国家的号召下,把废弃物回收转化为某种产品,经测算,处理成本(万元)与处理量(吨)之间的函数关系可近似的表示为:
,且每处理一吨废弃物可得价值为万元的某种产品,同时获得国家补贴万元.
(1)当时,判断该项举措能否获利?如果能获利,求出最大利润;
如果不能获利,请求出国家最少补贴多少万元,该工厂才不会亏损?
(2)当处理量为多少吨时,每吨的平均处理成本最少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)设,证明:在区间内存在唯一的零点;
(2)设,若对任意,有,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=在区间[-1,1]上是增函数.
(1)求实数a的值组成的集合A;
(2)设x1、x2是关于x的方程f(x)=的两个相异实根,若对任意a∈A及t∈[-1,1],不等式m2+tm+1≥|x1-x2|恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=-ax2,a∈R.
(1)当a=2时,求函数f(x)的零点;
(2)当a>0时,求证:函数f(x)在(0,+∞)内有且仅有一个零点;
(3)若函数f(x)有四个不同的零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:,其中是仪器的月产量.
(注:总收益=总成本+利润)
(1)将利润表示为月产量的函数;
(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?

查看答案和解析>>

同步练习册答案