精英家教网 > 高中数学 > 题目详情

已知.
(1)当,时,若不等式恒成立,求的范围;
(2)试判断函数内零点的个数,并说明理由.

(1),(2)存在唯一的零点.   

解析试题分析:(1)不等式恒成立问题,通常利用变量分离法转化为求最值问题. 由, 则,不等式恒成立就转化为,又上是增函数, ,所以.(2)判断函数内零点的个数,关键分析其在图像走势,即单调性变化情况. 因为是增函数, 所以内至多存在一个的零点.又由零点存在性定理有内至少存在一个的零点.两者综合得: 内存在唯一的零点. 
[解] (1)由, 则,       2分
上是增函数,        4分
所以.                                   6分
(2) 是增函数,且,                                        8分
      12分
所以内存在唯一的零点.                  14分
考点:不等式恒成立,函数零点

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x2+ax+1,f(x)在x∈[-3,1上恒有f(x)-3成立,求实数a 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某书商为提高某套丛书的销量,准备举办一场展销会.据市场调查,当每套丛书售价定为x元时,销售量可达到15—0.1x万套.现出版社为配合该书商的活动,决定进行价格改革,将每套丛书的供货价格分成固定价格和浮动价格两部分,其中固定价格为30元,浮动价格(单位:元)与销售量(单位:万套)成反比,比例系数为10.假设不计其他成本,即销售每套丛书的利润=售价-供货价格.问:
(1)每套丛书售价定为100元时,书商能获得的总利润是多少万元?
(2)每套丛书售价定为多少元时,单套丛书的利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

,求的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,若对于所有的恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为偶函数.
(1)求的值;
(2)若方程有且只有一个根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若函数上是减函数,求实数的取值范围;
(2)是否存在实数,当是自然常数)时,函数的最小值是3,若存在,求出的值;若不存在,说明理由;
(3)当时,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求的解集;
(2)设函数,若对任意的都成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)解方程:
(2)已知命题命题且命题的必要条件,求实数m的取值范围

查看答案和解析>>

同步练习册答案