精英家教网 > 高中数学 > 题目详情

已知函数
(1)若函数上是减函数,求实数的取值范围;
(2)是否存在实数,当是自然常数)时,函数的最小值是3,若存在,求出的值;若不存在,说明理由;
(3)当时,证明:.

(1);(2)详见解析;(3)详见解析.

解析试题分析:(1)先对函数进行求导,根据函数h(x)在[2,3]上是减函数,可得到其导函数在[2,3]上小于等于0应该恒成立,再结合二次函数的性质可求得a的范围;(2)先假设存在,然后对函数g(x)进行求导,再对a的值分情况讨论函数g(x)在(0,e]上的单调性和最小值取得,可知当a=e2能够保证当x∈(0,e]时g(x)有最小值3;(3)结合(2)知的最小值为3,只须证明即可,令,则上单调递增,∴的最大值为 ,即得证.
解:(1)令,则
  (1分))∵上是减函数,
上恒成立,即上恒成立 (2分)
上是减函数,∴的最小值为
  (4分)
(2)假设存在实数,使有最小值是3,∵
,则,∴上为减函数,的最小值为
矛盾, (5分)
时,令,则
,即上单调递减,在上单调递增
,解得   (7分)
,即时,上单调递减
矛盾,  (9分)
(3)∵,由整理得, (10分)
而由(2)知的最小值为3,只须证明即可  (11分))
,则上单调递增,
的最大值为(12分)
,即   (14分)
(接11分处另解, 即证,即证

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知,函数.
⑴若不等式对任意恒成立,求实数的最值范围;
⑵若,且函数的定义域和值域均为,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知.
(1)当,时,若不等式恒成立,求的范围;
(2)试判断函数内零点的个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某食品公司为了解某种新品种食品的市场需求,进行了20天的测试,人为地调控每天产品的单价P(元/件):前10天每天单价呈直线下降趋势(第10天免费赠送品尝),后10天呈直线上升,其中4天的单价记录如表:

时间(将第x天记为x)x
1
10
11
18
单价(元/件)P
9
0
1
8
而这20天相应的销售量Q(百件/天)与x对应的点(x,Q)在如图所示的半圆上.

(1)写出每天销售收入y(元)与时间x(天)的函数关系式y=f(x).
(2)在这20天中哪一天销售收入最高?为使每天销售收入最高,按此次测试结果应将单价P定为多少元为好?(结果精确到1元)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=xk+b(其中k,b∈R且k,b为常数)的图象经过A(4,2)、B(16,4)两点.
(1)求f(x)的解析式;
(2)如果函数g(x)与f(x)的图象关于直线y=x对称,解关于x的不等式:g(x)+g(x-2)>2a(x-2)+4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知二次函数的二次项系数为,且不等式的解集为(1,3).
⑴若方程有两个相等实数根,求的解析式.
⑵若的最大值为正数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求函数在区间上的最小值;
(2)设,其中,判断方程在区间 上的解的个数(其中为无理数,约等于且有).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=在区间[-1,1]上是增函数.
(1)求实数a的值组成的集合A;
(2)设x1、x2是关于x的方程f(x)=的两个相异实根,若对任意a∈A及t∈[-1,1],不等式m2+tm+1≥|x1-x2|恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数y=2-x2+ax+1在区间(-∞,3)内递增,求a的取值范围.

查看答案和解析>>

同步练习册答案