精英家教网 > 高中数学 > 题目详情
19.给出下列命题:
(1)小于$\frac{π}{2}$的角是锐角  
(2)第二象限角是钝角
(3)终边相同的角相等  
(4)若α与β有相同的终边,则必有α-β=2kπ(k∈Z),正确的个数是(  )
A.0B.1C.2D.3

分析 利用角的有关概念,通过举例逐一核对四个命题得答案.

解答 解:(1)小于$\frac{π}{2}$的角是锐角,错误,如$-\frac{π}{6}<\frac{π}{2}$,但$-\frac{π}{6}$不是锐角;  
(2)第二象限角是钝角,错误,如$-\frac{4π}{3}$是第二象限角,单不是钝角;
(3)终边相同的角相等,错误,如π与-π;  
(4)若α与β有相同的终边,则必有α-β=2kπ(k∈Z),正确.
故选:B.

点评 本题考查象限角和轴线角,考查有关角的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知a=$\underset{lim}{△x→0}$$\frac{f({x}_{0}+△x)-f({x}_{0})}{△x}$,
b=$\underset{lim}{△x→0}$$\frac{f({x}_{0}-△x)-f({x}_{0})}{△x}$,
c=$\underset{lim}{△x→0}$$\frac{f({x}_{0}+2△x)-f({x}_{0})}{△x}$,
d=$\underset{lim}{△x→0}$$\frac{f({x}_{0}+△x)-f({x}_{0}-△x)}{2△x}$,
e=$\underset{lim}{x→{x}_{0}}$$\frac{f(x)-f({x}_{0})}{x-{x}_{0}}$,
则b,c,d,e中与a相等的是(  )
A.c,dB.d,eC.b,eD.c,e

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)=lnx+2x-7的零点所在的区间为(  )
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知f(x)是R上的偶函数,对x∈R都有f(x+6)=f(x)+f(3)成立,若f(1)=2,则f(2011)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.$\root{3}{(lg5-1)^{3}}$-$\sqrt{(lg2-1)^{2}}$=(  )
A.lg$\frac{2}{5}$B.1C.-1D.lg$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.直线L圆x2+(y-2)2=2相切,且直线L在两坐标轴上的截距相等,则这样的直线L的条数为(  )
A..1B.2C..3D..4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数y=2sin2x的图象向右平移$\frac{π}{6}$个单位后得到的图象解析式是(  )
A.$y=2sin(2x+\frac{π}{6})$B.$y=2sin(2x-\frac{π}{6})$C.$y=2sin(2x-\frac{π}{3})$D.$y=2sin(2x+\frac{π}{3})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.三棱锥D-ABC的四个顶点在同一球面上,AC⊥AB,△DBC是边长为4的正三角形,若平面ABC⊥平面DBC,则该球的表面积为$\frac{64π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求使关于x的方程x2-2mx+m2-m-2=0的两根都大于2的充要条件.

查看答案和解析>>

同步练习册答案