精英家教网 > 高中数学 > 题目详情
9.(1+x)3(1+y)4的展开式中x2y2的系数是18.

分析 利用二项式定理展开即可得出.

解答 解:∵(1+x)3(1+y)4=(1+3x+3x2+x3)(1+4y+6y2+4y3+y4),
∴3×6=18,
故答案为:18.

点评 本题考查了二项式定理的应用,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知A={1,2,3,…,10},B={11,12,…,15}.现从A,B中各随机抽取3个元素组成一个样本.用Pijk(i<j<k且i,j,k∈A∪B)表示元素i,j,k同时出现在样本中的概率,则所有Pijk的和为20.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知命题p和命题q,若p∧q为真命题,则下面结论正确的是(  )
A.¬p是真命题B.¬q是真命题C.p∨q为真命题D.(¬p)∨(¬q)为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{3}({x}^{3}+1),x≥0}\\{g(x)+3x,x<0}\end{array}\right.$为奇函数,则g(-2)=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在△ABC中,A=$\frac{π}{3}$,a=$\sqrt{3}$,则BC边上的中线AM长的取值范围是($\frac{\sqrt{3}}{2}$,$\frac{3}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设a∈R,“cos2α=0”是“sinα=cosα”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.一个球与一个正三棱柱(底面是正三角形,侧棱垂直于底面的三棱柱)的三个侧面和两个底面都相切.已知这个球的体积是$\frac{9π}{2}$,那么这个三棱柱的体积是(  )
A.81$\sqrt{3}$B.$\frac{81}{2}$$\sqrt{3}$C.$\frac{81}{4}$$\sqrt{3}$D.$\frac{81}{16}$$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若函数y1=x1lnx1,函数y2=x2-3,则(x1-x22+(y1-y22的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知f(x)=x2+ax+b,a,b∈R,不等式x>f(x)的解集是(-2,4),则f(x)>f(f(x))的解是(-3,-2)∪(3,4).

查看答案和解析>>

同步练习册答案