精英家教网 > 高中数学 > 题目详情
3.满足A⊆{1,2,3,4},且A∩{2,3,4}={ 3,4}的集合A的个数是(  )
A.1B.2C.3D.4

分析 根据A⊆{1,2,3,4},得到A为{1,2,3,4}的子集,由A∩{2,3,4}={3,4},得到元素3,4属于A,2不属于A,确定出A的个数即可.

解答 解:∵A⊆{1,2,3,4},且A∩{2,3,4}={3,4},
∴A={3,4},{1,3,4},即满足题意A的个数是2.
故选:B.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=2sinxcosx+1-2cos2(x-$\frac{π}{12}$),(x∈R),则下列结论正确的是(  )
A.周期T=2πB.f(x)向左平移$\frac{π}{6}$后是奇函数
C.一个对称中心是($\frac{π}{3}$,0)D.一条对称轴是x=$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在△ABC中,内角A,B,C的对边分别为a,b,c.已知$cosA=\frac{2}{3},sinB=\sqrt{5}cosC$.
(1)求tanC的值;
(2)若$a=\sqrt{2}$,求边c的长及△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.A,B两点到平面α的距离分别是3,5,M是AB的中点,则M到平面α的距离是4或1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.直线a∥b,b?α,那么直线a与平面α的位置关系(  )
A.平行B.在平面内C.平行或在平面内D.相交或平行

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知向量$\overrightarrow m=(sin2x,1)$,$\overrightarrow n=(cos2x,-\frac{3}{2})$,$f(x)=(\overrightarrow m-\overrightarrow n)•\overrightarrow m$,则函数f(x)的最小正周期与最大值分别为(  )
A.$π,3+\frac{{\sqrt{2}}}{2}$B.$\frac{π}{2},3+\frac{{\sqrt{2}}}{2}$C.$π,\frac{7}{2}$D.$\frac{π}{2},3$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-2,4),且k$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{b}$垂直,则k=(  )
A.$\frac{10}{3}$B.-$\frac{10}{3}$C.-$\frac{20}{3}$D.$\frac{20}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列关于不等式的结论中正确的是(  )
A.若a>b,则ac2>bc2B.若a>b,则a2>b2
C.若a<b<0,则a2<ab<b2D.若a<b<0,则$\frac{a}{b}$>$\frac{b}{a}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图,设抛物线y2=4x的焦点为F,过点(-2,0)的直线l交抛物线于A,B两点,线段AB的中垂线分别与AB,x轴交于P,Q两点.若P,Q,F,B四点共圆,则该圆的半径是$\frac{\sqrt{65}}{4}$.

查看答案和解析>>

同步练习册答案