精英家教网 > 高中数学 > 题目详情
13.如图,设抛物线y2=4x的焦点为F,过点(-2,0)的直线l交抛物线于A,B两点,线段AB的中垂线分别与AB,x轴交于P,Q两点.若P,Q,F,B四点共圆,则该圆的半径是$\frac{\sqrt{65}}{4}$.

分析 先求出B的坐标,可得AB的方程,进而求出P的坐标,可得PQ的方程,Q的坐标,即可得出结论.

解答 解:由题意,BF⊥x轴,∴B(1,2)
∴kAB=$\frac{2-0}{1+2}$=$\frac{2}{3}$,
∴AB的方程为y=$\frac{2}{3}$(x+2),
代入y2=4x,可得x2-5x+4=0,∴x=1或4,
∴P($\frac{5}{2}$,3),
∴PQ的方程为y-3=-$\frac{3}{2}$(x-$\frac{5}{2}$),
令y=0,可得Q($\frac{9}{2}$,0),
∴|BQ|=$\sqrt{(\frac{9}{2}-1)^{2}+(0-2)^{2}}$=$\frac{\sqrt{65}}{2}$,
∴圆的半径是$\frac{\sqrt{65}}{4}$.
故答案为:$\frac{\sqrt{65}}{4}$.

点评 本题考查P,Q,F,B四点共圆,考查直线与抛物线的位置关系,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.满足A⊆{1,2,3,4},且A∩{2,3,4}={ 3,4}的集合A的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知点A(-2,0),B(2,0),动点P到A的距离为6,线段PB的垂直平分线l交线段PA于点M,则M的轨迹方程为$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{5}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,四棱锥P-ABCD中,BC=CD,AB=AD=$\sqrt{2}$,AB⊥AD,O为BD的中点,PO⊥平面ABCD,平面PAB⊥平面PBC,设OC=a,PO=b.
(Ⅰ)若a=$\frac{1}{3}$,求b的值;
(Ⅱ)当$\frac{a}{b}$取得最大值时,求PC与平面PAB所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.抛物线y2=2px(p>0)的焦点为F,P为抛物线上一点,则以线段|PF|为直径的圆与y轴位置关系为(  )
A.相交B.相离C.相切D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知数列{an}的前n项和Sn=$\frac{1}{2}$n(n+1),n∈N*,bn=3n+(-1)n-1an,则数列{bn}的前2n+1项和为(  )
A.$\frac{{3}^{2n+2}-1}{2}$+nB.$\frac{1}{2}$•32n+2+n+$\frac{1}{2}$C.$\frac{{3}^{2n+2}-1}{2}$-nD.$\frac{1}{2}$•32n+2-n+$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.数列{an}中,a1=t,a2=t2,t∈(1,2),且an+1+tan-1=(t+1)an(n∈N,n≥2).
(I)求证:数列{an+1-an}是等比数列,并求其通项公式;
(Ⅱ)若bn=$\frac{{{a}_{n}}^{2}+1}{2{a}_{n}}$(n∈N*),Sn为数列{bn}的前n项和,求证:Sn<2n-${2}^{-\frac{n}{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.等差数列{an}的各项均为正数,a1=3,前n项和为Sn,数列{bn}为等比数列,b1=1,且b2S2=4,b3S3=$\frac{15}{4}$.
(1)求数列{an}、{bn}的通项公式;
(2)数列{cn}满足:cn=(-1)n(an-2)bn+1,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.a=4,c=$\sqrt{15}$,焦点在y轴上的椭圆的标准方程是$\frac{{y}^{2}}{16}+{x}^{2}=1$.

查看答案和解析>>

同步练习册答案