精英家教网 > 高中数学 > 题目详情
15.已知$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-2,4),且k$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{b}$垂直,则k=(  )
A.$\frac{10}{3}$B.-$\frac{10}{3}$C.-$\frac{20}{3}$D.$\frac{20}{3}$

分析 由向量数量积的坐标表示和向量模的公式,可得$\overrightarrow{a}$,$\overrightarrow{b}$的数量积和模,再由向量垂直的条件:数量积为0,计算即可得到k的值.

解答 解:$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-2,4),
可得$\overrightarrow{a}$•$\overrightarrow{b}$=-2+8=6,|$\overrightarrow{b}$|=$\sqrt{4+16}$=2$\sqrt{5}$,
由k$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{b}$垂直,可得(k$\overrightarrow{a}$+$\overrightarrow{b}$)•$\overrightarrow{b}$=0,
k$\overrightarrow{a}$•$\overrightarrow{b}$+$\overrightarrow{b}$2=0,即有6k+20=0,
解得k=-$\frac{10}{3}$.
故选B.

点评 本题考查向量的数量积的坐标表示和性质,主要考查向量垂直的条件:数量积为0,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.若函数f(x)=exsinx,则此函数图象在点(4,f(4))处的切线的倾斜角为(  )
A.钝角B.0C.$\frac{π}{2}$D.锐角

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知命题p:方程$\frac{x^2}{k}+\frac{y^2}{4-k}=1$表示焦点在x轴上的椭圆,命题q:方程(k-1)x2+(k-3)y2=1表示双曲线.若p∨q为真,p∧q为假,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.满足A⊆{1,2,3,4},且A∩{2,3,4}={ 3,4}的集合A的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设不等式组$\left\{\begin{array}{l}{x+y≤\sqrt{2}}\\{x-y≥-\sqrt{2}}\\{y≥0}\end{array}\right.$所表示的区域为M,函数y=$\sqrt{1-{x}^{2}}$的图象与x轴所围成的区域为N,向M内随机投一个点,求该点落在N内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数$f(x)=\frac{{2{{cos}^3}x+2{{sin}^2}(2π-x)+sin(\frac{π}{2}+x)-3}}{{2+2{{sin}^2}(\frac{π}{2}+x)-sin(\frac{3π}{2}-x)}}$,则$f(\frac{π}{3})$=-$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.三角形ABC的内角A,B的对边分别为a,b,若$acos({π-A})+bsin({\frac{π}{2}+B})=0$,则三角形ABC的形状为等腰三角形或直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知点A(-2,0),B(2,0),动点P到A的距离为6,线段PB的垂直平分线l交线段PA于点M,则M的轨迹方程为$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{5}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.数列{an}中,a1=t,a2=t2,t∈(1,2),且an+1+tan-1=(t+1)an(n∈N,n≥2).
(I)求证:数列{an+1-an}是等比数列,并求其通项公式;
(Ⅱ)若bn=$\frac{{{a}_{n}}^{2}+1}{2{a}_{n}}$(n∈N*),Sn为数列{bn}的前n项和,求证:Sn<2n-${2}^{-\frac{n}{2}}$.

查看答案和解析>>

同步练习册答案