精英家教网 > 高中数学 > 题目详情
讨论函数f(x)=lg(1+x)+lg(1-x)的奇偶性与单调性.
考点:对数函数的图像与性质
专题:综合题,函数的性质及应用
分析:按照奇偶性与单调性的定义进行讨论,注意要先求函数的定义域.
解答: 解:由题意,得
1+x>0
1-x>0
,解得-1<x<1,
∴f(x)的定义域为(-1,1).
又∵f(-x)=lg(1-x)+lg(1+x)=f(x),
∴f(x)为偶函数.
f(x)=lg(1-x)+lg(1+x)=lg[(1-x)(1-x)]=lg(1-x2).
设x1,x2∈(-1,0)且x1<x2
∴x2-x1>0,x1+x2<0,
∴(1-x12)-(1-x22)=(x2-x1)(x1+x2)<0,
即1-x12<1-x22
∴lg(1-x12)<lg(1-x22),
即f(x1)<f(x2),
∴f(x)=lg(1+x)+lg(1-x)在(-1,0)内单调递增.
又∵f(x)是偶函数,
∴f(x)=lg(1+x)+lg(1-x)在(0,1)内单调递减.
点评:判断函数奇偶性,必须先求出定义域,单调性的判断在定义域内用定义判断.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左焦点为F1(-1,0),离心率e=
1
2

(Ⅰ)求椭圆的方程
(Ⅱ)若M是圆x2+y2=b2在第一象限内圆弧上的一个动点,过点M作圆x2+y2=b2的切线交椭圆于P,Q两点,问|F1P|+|F1Q|-|PQ|是否为定值?如果不是,说明理由;如果是,求出定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算下列各式的值.
(1)log2
7
48
+log212-
1
2
log242;
(2)lg52+
2
3
lg8+lg5•lg20+lg22.

查看答案和解析>>

科目:高中数学 来源: 题型:

若直线l:kx+y+2=0与曲线C:ρ=2cosθ相交,则k的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A(2,0),B(0,2),C(cosθ,sinθ),O为坐标原点.
(1)
AC
BC
=-
1
3
,求sin2θ的值;
(2)若|
OA
+
OC
|=
7
,且θ∈(-π,0),求
OB
OC
的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:

五个学生的数学与物理成绩如下表:
学生ABCDE
数学8075706560
物理7066686462
(1)作出散点图和相关直线图;
(2)求出回归方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两人参加某种选拔测试.在备选的10道题中,甲答对其中每道题的概率都是
3
5
,乙能答对其中的5道题.规定每次考试都从备选的10道题中随机抽出3道题进行测试,答对一题加10分,答错一题(不答视为答错)减5分,至少得15分才能入选.
(Ⅰ)分别求甲得0分和乙得0分的概率;
(Ⅱ)求甲、乙两人中至少有一人入选的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

设S={x|x≤3},T={x|x<1},求S∩T,S∪T,(∁US)∩T,(∁US)∩(∁UT),∁U(S∪T).

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)求函数f(x)=
1
x+1
+
4-x2
的定义域;
(2)求函数y=2x-
x-1
的值域;
(3)已知函数y=
ax+b
x2+1
的值域为[-2,2],求a,b的值.

查看答案和解析>>

同步练习册答案