精英家教网 > 高中数学 > 题目详情
16.如图,正方体ABCD-A1B1C1D1的棱长为1,E、F分别是BB1和CD的中点.
(Ⅰ)求AE与A1F所成角的大小;
(Ⅱ)求AE与平面ABCD所成角的正切值.

分析 (Ⅰ)建立坐标系,利用向量方法求AE与A1F所成角的大小;
(Ⅱ)证明∠EAB就是AE与平面ABCD所成角,即可求AE与平面ABCD所成角的正切值.

解答 解:(Ⅰ)如图,建立坐标系A-xyz,则A(0,0,0),E(1,0,$\frac{1}{2}$),A1(0,0,1),F($\frac{1}{2}$,1,0)
$\overrightarrow{AE}$=(1,0,$\frac{1}{2}$),$\overrightarrow{{A}_{1}F}$=($\frac{1}{2}$,1,-1)
∴$\overrightarrow{AE}•\overrightarrow{{A}_{1}F}$=0,
所以AE与A1F所成角为90°-------------------------------------(6分)
(Ⅱ)∵ABCD-A1B1C1D1是正方体,
∴BB1⊥平面ABCD
∴∠EAB就是AE与平面ABCD所成角,又E是BB1中点,
在直角三角形EBA中,tan∠EAB=$\frac{1}{2}$.-----------------------(13分)

点评 本题考查异面直线所成角,线面角,考查向量知识的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.在棱长为1的正方体ABCD-A1B1C1D1中,M、N分别是AB1、BC1的中点.
(Ⅰ)求证:直线MN∥平面ABCD.
(Ⅱ)求四面体B1A1BC1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.定义上凸函数如下:设f(x)为区间I上的函数,若对任意的x1,x2∈I总有f($\frac{{x}_{1}+{x}_{2}}{2}$)≤$\frac{f({x}_{1})+f({x}_{2})}{2}$,则称f(x)为I上的上凸函数,某同学查阅资料后发现了上凸函数有如下判定定理和性质定理:
判定定理:f(x)为上凸函数的充要条件是f″(x)≥0,x∈I,其中f″(x)为f(x)的导函数f′(x)的导数.
性质定理:若函数f(x)为区间I上的下凸函数,则对I内任意的x1,x2,…,xn,都有$\frac{f({x}_{1})+f({x}_{2})+…+f({x}_{n})}{n}$≥f($\frac{{x}_{1}+{x}_{2}+…+{x}_{n}}{n}$).
请问:在△ABC中,sinA+sinB+sinC的最大值为$\frac{3\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左焦点为F(-c,0)(c>0),过点F作圆${x^2}+{y^2}=\frac{a^2}{4}$的一条切线交圆于点E,交双曲线右支于点P,若$\overline{OP}=2\overline{OE}-\overline{OF}$,则双曲线的离心率为(  )
A.$\frac{{\sqrt{10}}}{2}$B.$\frac{{\sqrt{5}}}{2}$C.$\frac{{\sqrt{7}}}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在空间,可以确定一个平面的条件是(  )
A.两条直线B.一点和一条直线C.三个点D.一个三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=$\left\{\begin{array}{l}{\sqrt{x},x≥0}\\{cosx,x<0}\end{array}\right.$,则f[f(-$\frac{π}{3}$)]=(  )
A.cos$\frac{1}{2}$B.-cos$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.±$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知π<α<$\frac{3π}{2}$,sinα=-$\frac{4}{5}$.
(Ⅰ)求cosα的值;
(Ⅱ)求sin2α+3tanα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在直四棱柱ABCD-A1B1C1D1中,底面四边形ABCD是直角梯形,其中
AB⊥AD,AB=BC=1,AD=2,AA1=$\sqrt{2}$.
    (Ⅰ)求证:直线C1D⊥平面ACD1
    (Ⅱ)试求三棱锥A1-ACD1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.用三段论推理:“任何实数的绝对值大于0,因为a是实数,所以a的绝对值大于0”,你认为这个推理(  )
A.大前提错误B.小前提错误C.推理形式错误D.是正确的

查看答案和解析>>

同步练习册答案