分析 (1)设5次投篮至少有1次投篮命中为事件A,利用对立事件概率计算公式能求出至少有1次投篮命中的概率.
(2)由题意知X的可能取值为0,1,2,3,4,5,分别求出相应的概率,由此能求出X的分布列和E(X).
解答 解:(1)设5次投篮至少有1次投篮命中为事件A,
则P(A)=1-(1-$\frac{2}{3}$)5=$\frac{242}{243}$,
∴至少有1次投篮命中的概率为$\frac{242}{243}$.
(2)由题意知X的可能取值为0,1,2,3,4,5,
P(X=0)=(1-$\frac{2}{3}$)5=$\frac{1}{243}$,
P(X=1)=${C}_{5}^{1}(\frac{2}{3})(1-\frac{2}{3})^{4}$=$\frac{10}{243}$,
P(X=2)=${C}_{5}^{2}(\frac{2}{3})^{2}(1-\frac{2}{3})^{3}$=$\frac{40}{243}$,
P(X=3)=${C}_{5}^{3}(\frac{2}{3})^{3}(1-\frac{2}{3})^{2}$=$\frac{80}{243}$,
P(X=4)=${C}_{5}^{4}(\frac{2}{3})^{4}(1-\frac{2}{3})^{1}$=$\frac{80}{243}$,
P(X=5)=${C}_{5}^{5}(\frac{2}{3})^{5}$=$\frac{32}{243}$,
∴X的分布列为:
| X | 0 | 1 | 2 | 3 | 4 | 5 |
| P | $\frac{1}{243}$ | $\frac{10}{243}$ | $\frac{40}{243}$ | $\frac{80}{243}$ | $\frac{80}{243}$ | $\frac{32}{243}$ |
点评 本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,注意二项分布的性质的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | {0,1} | B. | {2,3} | C. | {3} | D. | {2,3,4} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 8 | B. | 4 | C. | 3 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | e | B. | lne | C. | 1 | D. | 0 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com