精英家教网 > 高中数学 > 题目详情

【题目】某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O为圆孔及轮廓圆弧AB所在圆的圆心,A是圆弧AB与直线AG的切点,B是圆弧AB与直线BC的切点,四边形DEFG为矩形,BCDG,垂足为CtanODC=EF=12 cmDE=2 cmA到直线DEEF的距离均为7 cm,圆孔半径为1 cm,则图中阴影部分的面积为________cm2

【答案】

【解析】

利用求出圆弧所在圆的半径,结合扇形的面积公式求出扇形的面积,求出直角的面积,阴影部分的面积可通过两者的面积之和减去半个单位圆的面积求得.

,由题意,所以

因为,所以

因为,所以

因为与圆弧相切于点,所以

为等腰直角三角形;

在直角中,

因为,所以

解得

等腰直角的面积为

扇形的面积

所以阴影部分的面积为.

故答案为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,直线的极坐标方程

(1)若曲线只有一个公共点,求的值;

(2)为曲线上的两点,且,求的面积最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一次数学考试中,从甲,乙两个班级各抽取10名同学的成绩进行统计分析,他们成绩的茎叶图如图所示,成绩不小于90分为及格.

1)从两班10名同学中各抽取一人,在有人及格的情况下,求乙班同学不及格的概率;

2)从甲班10人中取一人,乙班10人中取两人,三人中及格人数记为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,平面,点分别为的中点.

(Ⅰ)求证:平面

(Ⅱ)求二面角的正弦值;

(Ⅲ)若为线段上的点,且直线与平面所成的角为,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

1)求时,函数的单调区间;

2)若函数有两个零点,求正整数的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求曲线y=fx)在点(1f1))处的切线与两坐标轴围成的三角形的面积;

2)若fx≥1,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在全球抗击新冠肺炎疫情期间,我国医疗物资生产企业加班加点生产口罩、防护服、消毒水等防疫物品,保障抗疫一线医疗物资供应,在国际社会上赢得一片赞誉.我国某口罩生产企业在加大生产的同时,狠抓质量管理,不定时抽查口罩质量,该企业质检人员从所生产的口罩中随机抽取了100个,将其质量指标值分成以下六组:,…,,得到如下频率分布直方图.

1)求出直方图中的值;

2)利用样本估计总体的思想,估计该企业所生产的口罩的质量指标值的平均数和中位数(同一组中的数据用该组区间中点值作代表,中位数精确到0.01);

3)现规定:质量指标值小于70的口罩为二等品,质量指标值不小于70的口罩为一等品.利用分层抽样的方法从该企业所抽取的100个口罩中抽出5个口罩,并从中再随机抽取2个作进一步的质量分析,试求这2个口罩中恰好有1个口罩为一等品的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数,若在定义域内存在实数,满足,则称为“类函数”.

(1)已知函数,试判断是否为“类函数”?并说明理由;

(2)设是定义在上的“类函数”,求是实数的最小值;

(3)若 为其定义域上的“类函数”,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若数列,满足,则称为数列偏差数列.

1)若为常数列,且为偏差数列,试判断是否一定为等差数列,并说明理由;

2)若无穷数列是各项均为正整数的等比数列,且,为数列偏差数列,求的值;

3)设,为数列偏差数列,,对任意恒成立,求实数的最小值.

查看答案和解析>>

同步练习册答案