分析 设△ABC的三边分别为a,b,c利用正弦定理可得a=2sinA,b=2sinB,c=2sinC,利用面积为原来三角形面积$\frac{1}{4}$,可得长为sinA,sinB,sinC的三条线段构成的三角形的面积为$\frac{1}{8}$.
解答 解:设△ABC的三边分别为a,b,c
利用正弦定理可得a=2sinA,b=2sinB,c=2sinC
∵a,b,c为三角形的三边
∴sinA,sinB,sinC也能构成三角形的边,面积为原来三角形面积$\frac{1}{4}$,
∴长为sinA,sinB,sinC的三条线段构成的三角形的面积为$\frac{1}{8}$.
故答案为:$\frac{1}{8}$.
点评 本题主要考查了正弦定理的变形形式a=2RsinA,b=2RsinB,c=2RsinC(R为三角形外接圆的半径)的应用,属于中档试题.
科目:高中数学 来源: 题型:选择题
| A. | a<b<c | B. | b<a<c | C. | c<a<b | D. | c<b<a |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | 1 | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
| x | 1 | 2 | 3 |
| f(x) | 2 | 3 | 1 |
| x | 1 | 2 | 3 |
| g(x) | 3 | 2 | 1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com