分析 根据数列{an}满足a1=2,an=$\frac{{a}_{n+1}-1}{{a}_{n+1}+1}$,可得数列{an}是周期为4的周期数列,且a1a2a3a4=1,即可得出结论.
解答 解:∵an=$\frac{{a}_{n+1}-1}{{a}_{n+1}+1}$,
∴an+1=$\frac{1+{a}_{n}}{1-{a}_{n}}$,
∵a1=2,
∴a2=-3,
a3=-$\frac{1}{2}$,
a4=$\frac{1}{3}$,
a5=2,…,
∴数列{an}是周期为4的周期数列,且a1a2a3a4=1,
∵2018=4×504+2,
∴T2018=-6.
故答案为:-6.
点评 本题考查数列递推式,考查学生分析解决问题的能力,确定数列{an}是周期为4的周期数列,且a1a2a3a4=1是关键,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{6}$ | B. | $\frac{7}{9}$ | C. | -$\frac{1}{9}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $-\frac{1}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $-\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2π}$ | B. | $\frac{1}{π}$ | C. | $\frac{2}{π}$ | D. | $\frac{1}{3π}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com