精英家教网 > 高中数学 > 题目详情
10.已知边长为$\sqrt{3}$的正三角形ABC三个顶点都在球O的表面上,且球心O到平面ABC的距离为该球半径的一半,则球O的表面积为$\frac{16π}{3}$.

分析 设OO′⊥平面ABC,垂足是O′,设球半径为r,则AO′=1,OA=r,OO′=$\frac{1}{2}r$,由勾股定理求出r2=$\frac{4}{3}$,由此能求出球O的表面积.

解答 解:如图,设OO′⊥平面ABC,垂足是O′,设球半径为r,
∵边长为$\sqrt{3}$的正三角形ABC三个顶点都在球O的表面上,
且球心O到平面ABC的距离为该球半径的一半,
∴AO′=$\frac{2}{3}\sqrt{3-\frac{3}{4}}$=1,OA=r,OO′=$\frac{1}{2}r$,
∵OA2=O′A2+OO'2,∴${r}^{2}=1+\frac{{r}^{2}}{4}$
解得r2=$\frac{4}{3}$,
∴球O的表面积S=4πr2=$\frac{16π}{3}$.
故答案为:$\frac{16π}{3}$.

点评 本题考查球的表面积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知{an}是各项均为正数的等比数列(公比q>1),bn=log2an,b1+b2+b3=3,b1b2b3=-3,则an=(  )
A.${a_n}={2^{2n-3}}$B.${a_n}={2^{5-2n}}$
C.${a_n}={2^{2n-5}}$D.${a_n}={2^{2n-3}}$或${a_n}={2^{5-2n}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.一超市在销售一批大小相近的某时令水果时,由于存放的时间对口味影响较大,超市根据调研决定最多销售5天,第6天就会扎成果汁.进价2元一个,售价10元一个,每天的仓储保管费平均为每个水果每天0.5元,(第一天售出的水果,算一天仓储保管费,第二天售出的水果,算两天仓储保管费,以此类推)一个水果榨成果汁后能卖2元且能很快售完,果汁不计仓储保管成本.按以下规则定价:
售出时间第一天第二天第三天第四天第五天
售出时折扣原价9折8折7折5折
从该批水果中随机抽取100个贴上标记,根据这100个水果的销售情况得到如下数据:
售出的时间第一天第二天第三天第四天第五天
售出的个数402515510
(1)①估计一个水果至多两天(包括两天)销售出去的概率;
②若一个水果在第二天售出,求这个水果产生的利润.
(2)以事件发生的频率作为相应的概率,在这批水果的销售活动中,设一个水果产生的利润为X元,求X的分布列和数学期望E(X)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知实数x,y满足$\left\{{\begin{array}{l}{y≥x+2}\\{x+y≤4}\\{2y≥4-x}\end{array}}\right.$,则$z={(\frac{1}{2})^{2x-y}}$的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.△ABC的内角A,B,C的对边分别为a,b,c.已知a=1,c=2,$cosC=\frac{1}{4}$,则△ABC的面积为(  )
A.$\frac{1}{4}$B.$\frac{1}{8}$C.$\frac{{\sqrt{15}}}{4}$D.$\frac{{\sqrt{15}}}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数),在以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C的极坐标方程为ρ=2$\sqrt{2}$cos($\frac{π}{4}$+θ).
(I)求直线l的普通方程和曲线C的直角坐标方程;
(Ⅱ)设直线l与曲线C相交于M,N两点,求|MN|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=2alnx-2(a+1)x+x2(a≤1)
(1)讨论f(x)的单调性;
(2)若f(x)在区间[$\frac{1}{e}$,e2]上有两个零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求函数$f(x)=\frac{{-2{x^2}+x-3}}{x},\;(x>0)$的最大值,以及此时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设集合A={x|-1<x<3},B={y|y=2x,x∈[0,2]},则A∩B=(  )
A.[0,2]B.(1,3)C.[1,3)D.(1,4)

查看答案和解析>>

同步练习册答案