分析 设OO′⊥平面ABC,垂足是O′,设球半径为r,则AO′=1,OA=r,OO′=$\frac{1}{2}r$,由勾股定理求出r2=$\frac{4}{3}$,由此能求出球O的表面积.
解答 解:
如图,设OO′⊥平面ABC,垂足是O′,设球半径为r,
∵边长为$\sqrt{3}$的正三角形ABC三个顶点都在球O的表面上,
且球心O到平面ABC的距离为该球半径的一半,
∴AO′=$\frac{2}{3}\sqrt{3-\frac{3}{4}}$=1,OA=r,OO′=$\frac{1}{2}r$,
∵OA2=O′A2+OO'2,∴${r}^{2}=1+\frac{{r}^{2}}{4}$
解得r2=$\frac{4}{3}$,
∴球O的表面积S=4πr2=$\frac{16π}{3}$.
故答案为:$\frac{16π}{3}$.
点评 本题考查球的表面积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | ${a_n}={2^{2n-3}}$ | B. | ${a_n}={2^{5-2n}}$ | ||
| C. | ${a_n}={2^{2n-5}}$ | D. | ${a_n}={2^{2n-3}}$或${a_n}={2^{5-2n}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 售出时间 | 第一天 | 第二天 | 第三天 | 第四天 | 第五天 |
| 售出时折扣 | 原价 | 9折 | 8折 | 7折 | 5折 |
| 售出的时间 | 第一天 | 第二天 | 第三天 | 第四天 | 第五天 |
| 售出的个数 | 40 | 25 | 15 | 5 | 10 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ | B. | $\frac{1}{8}$ | C. | $\frac{{\sqrt{15}}}{4}$ | D. | $\frac{{\sqrt{15}}}{8}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [0,2] | B. | (1,3) | C. | [1,3) | D. | (1,4) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com