精英家教网 > 高中数学 > 题目详情
6.在某学校组织的一次智力竞赛中,比赛共分为两个环节,其中第一环节竞赛题有A、B两组题,每个选手最多有3次答题机会,答对一道A组题得20分,答对一道B组题得30分.选手可以任意选择答题的顺序,如果前两次得分之和超过30分即停止答题,进入下一环节比赛,否则答3次.某同学正确回答A组题的概率都是p,正确回答B组题的概率都是$\frac{1}{4}$,且回答正确与否相互之间没有影响.该同学选择先答一道B组题,然后都答A组题.已知第一环节比赛结束时该同学得分超过30分的概率为$\frac{5}{9}$.
(Ⅰ)求p的值;
(Ⅱ)用ξ表示第一环节比赛结束后该同学的总得分,求随机变量ξ的数学期望;
(Ⅲ)试比较该同学选择都回答A组题与选择上述方式答题,能进入下一环节竞赛的概率的大小.

分析 (Ⅰ)设事件A为“该同学答对一道A组题”,事件B为“该同学答对一道B组题”,且事件A,B相互独立,由题意,得:P($\overline{B}AAA+B\overline{A}A+BA$)=P($\overline{B}AA$)+P(B$\overline{A}A$)+P(BA)=$\frac{5}{9}$,由此能求出p.
(Ⅱ)依题意ξ的可能取值为0,20,30,40,50.分别求出相应的概率,由此能求出随机变量ξ的数学期望.
(Ⅲ)设事伯C为“该同学选择都回答A组且得分超过30分”,求出P(C);该同学先回答B组题接着都回答A组题得分大于30分的概率为$\frac{5}{9}$,从而得到该同学都回答A组题能进入下一环节竞赛的概率较大.

解答 解:(Ⅰ)设事件A为“该同学答对一道A组题”,事件B为“该同学答对一道B组题”,且事件A,B相互独立,
P(A)=p,P($\overline{A}$)=1-p,P(B)=$\frac{1}{4}$,P($\overline{B}$)=$\frac{3}{4}$,
由题意,得:P($\overline{B}AAA+B\overline{A}A+BA$)=P($\overline{B}AA$)+P(B$\overline{A}A$)+P(BA)=$\frac{5}{9}$,
∴$\frac{3}{4}{p}^{2}+\frac{1}{4}p(1-p)+\frac{1}{4}p$=$\frac{5}{9}$,即9p2+9p-10=0,
解得p=$\frac{2}{3}$或p=-$\frac{5}{3}$(舍),
∴p=$\frac{2}{3}$.
(Ⅱ)依题意ξ的可能取值为0,20,30,40,50.
P(ξ=0)=$P(\overline{B}\overline{A}\overline{A)}$=$\frac{3}{4}(1-\frac{2}{3})^{2}$=$\frac{1}{12}$,
P(ξ=20)=$P(\overline{B}A\overline{A}+\overline{B}\overline{A}A$)=$2×\frac{3}{4}×\frac{2}{3}(1-\frac{2}{3})=\frac{1}{3}$,
P(ξ=30)=P(B$\overline{A}\overline{A}$)=$\frac{1}{4}×\frac{1}{3}×\frac{1}{3}$=$\frac{1}{36}$,
P(ξ=40)=$P(\overline{B}AA)$=$\frac{3}{4}×(\frac{2}{3})^{2}$=$\frac{1}{3}$,
P(ξ=50)=P($B\overline{A}A+BA$)=$\frac{1}{4}×\frac{1}{3}×\frac{2}{3}+\frac{1}{4}×\frac{2}{3}$=$\frac{2}{9}$,
ξ的分布列为:

 ξ 0 20 30 40 50
 P $\frac{1}{12}$ $\frac{1}{3}$ $\frac{1}{36}$ $\frac{1}{3}$ $\frac{2}{9}$
E(ξ)=$0×\frac{1}{12}+20×\frac{1}{3}+30×\frac{1}{36}+40×\frac{1}{3}+50×\frac{2}{9}$=$\frac{575}{18}$.
(Ⅲ)设事伯C为“该同学选择都回答A组且得分超过30分”,
则P(C)=P($\overline{A}AA+A\overline{A}A+AA$)=2×$\frac{1}{3}×(\frac{2}{3})^{2}$+($\frac{2}{3}$)2=$\frac{20}{27}$,
由已知得该同学先回答B组题接着都回答A组题得分大于30分的概率为$\frac{5}{9}$,
∵$\frac{20}{27}>\frac{5}{9}$,∴该同学都回答A组题能进入下一环节竞赛的概率较大.

点评 本题考查概率的求法,考查离散型随机变量的分布列、数学期望的求法,是中档题,解题时要认真审题,注意相互独立事件概率乘法公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知函数$f(x)=lnx-\frac{1}{x}$的零点为x0,则下列结论正确的是(  )
A.$ln{x_0}>{x_0}^{\frac{1}{2}}>{2^{x_0}}$B.${2^{x_0}}>ln{x_0}>{x_0}^{\frac{1}{2}}$
C.${2^{x_0}}>{x_0}^{\frac{1}{2}}>ln{x_0}$D.${x_0}^{\frac{1}{2}}>{2^{x_0}}>ln{x_0}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.当x∈(-∞,1],不等式$\frac{{1+{2^x}+{4^x}•a}}{{{a^2}-a+1}}$>0恒成立,则实数a的取值范围为a>$-\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知α,β∈[-$\frac{π}{2}$,$\frac{π}{2}$],且α+β<0,若sinα=$\frac{1}{3}$,sinβ=1-a,则实数a的取值范围是(  )
A.[0,1)B.(1,2]C.($\frac{4}{3}$,2]D.($\frac{1}{3}$,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设a∈Z,且0≤a<13,若512016+a能被13整除,则a=(  )
A.0B.1C.11D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若函数f(x)=$\frac{1}{2}$x2-alnx在(1,+∞)上为增函数,则实数a的取值范围是(  )
A.(1,+∞)B.[1,+∞)C.(-∞,1)D.(-∞,1]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.集合A={x|x2-3x<0},B={x||x|<2},则A∪B={x|-2<x<3}..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.从高一年级1500名学生中的某次数学考试成绩(单位:分)中抽取部分学生的成绩,得到频率分布直方图如图:
(Ⅰ)求频率分布直方图中a的值;
(Ⅱ)若以成绩不低于80分为“优秀”,估计全年级成绩为“优秀”的学生人数;
(Ⅲ)估计这次考试全年级的平均分(同一组中的数据用该组区间的中点值作代表).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.二项式($\sqrt{x}$+$\frac{1}{{x}^{2}}$)10的展开式的常数项是45.

查看答案和解析>>

同步练习册答案