精英家教网 > 高中数学 > 题目详情
16.已知函数$f(x)=lnx-\frac{1}{x}$的零点为x0,则下列结论正确的是(  )
A.$ln{x_0}>{x_0}^{\frac{1}{2}}>{2^{x_0}}$B.${2^{x_0}}>ln{x_0}>{x_0}^{\frac{1}{2}}$
C.${2^{x_0}}>{x_0}^{\frac{1}{2}}>ln{x_0}$D.${x_0}^{\frac{1}{2}}>{2^{x_0}}>ln{x_0}$

分析 利用函数零点的定义以及判定定理,求得x0∈(1,2),可得∴${2}^{{x}_{0}}$、$\sqrt{{x}_{0}}$、lnx0 的大小关系.

解答 解:∵函数$f(x)=lnx-\frac{1}{x}$的零点为x0,则x0>0,且lnx0 =$\frac{1}{{x}_{0}}$.
再根据f(x)在(0,+∞)为增函数,f(1)=-1<0,f(2)=ln2-$\frac{1}{2}$>0,f(1)•f(2)<0,
可得x0∈(1,2),${2}^{{x}_{0}}$>2,$\sqrt{{x}_{0}}$∈(1,2),lnx0∈( 0,ln2),
∴${2}^{{x}_{0}}$>$\sqrt{{x}_{0}}$>lnx0
故选:C.

点评 本题主要考查函数零点的定义以及判定定理,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知四棱柱ABCD-A1B1C1D1的底面ABCD为正方形,AA1⊥AC,M、N分别为棱AA1、CC1的中点.
(1)求证:直线MN⊥平面B1BD;
(2)已知AA1=AB,AA1⊥AB,取线段C1D1的中点Q,求二面角Q-MD-N的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,四棱锥P-ABCD的底面是正方形,PA⊥底面ABCD,PA=AD,点M是PD的中点,作ME⊥PC,交PC于点E.
(1)求证:PB∥平面MAC;
(2)求证:PC⊥平面AEM;
(3)求二面角A-PC-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=s-ke-x的图象在x=0处的切线方程为y=x.
(1)求s,k的值;
(2)若正项数列{an}满足${a_1}=\frac{1}{2}$,${a_n}={e^{{a_{n+1}}}}f({a_n})$,证明:数列{an}是递减数列;
(3)若$g(x)=\frac{1}{2}{x^3}-ax(x>0)$,当a>1时,讨论函数f(-x)-2与g(x)的图象公共点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.长方体ABCD-A1B1C1D1中,AB=3,AD=9,AA1=5,一条绳子沿着长方体的表面从点A拉到点C1,求绳子的最短长度.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.一个底面为正方形的四棱锥,其三视图如图所示,若这个四棱锥的体积为2,则此四棱锥最长的侧棱长为(  )
A.2$\sqrt{3}$B.$\sqrt{11}$C.$\sqrt{13}$D.$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图所示,在所有棱长均为1的四面体DEFG内有一个内接三棱柱ABC-A1B1C1,A,B,C在平面EFG内,A1,B1、C1分别在DE,DF,DG上,且AB=BC=CA=AA1,AA1⊥平面ABC,则AB=$\sqrt{6}$-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.我国古代数学名著《数学九章》中有云:“今有木长二丈四尺,围之五尺.葛生其下,缠木两周,上与木齐,问葛长几何?”其意思为“圆木长2丈4尺,圆周为5尺,葛藤从圆木的底部开始向上生长,绕圆木两周,刚好顶部与圆木平齐,问葛藤最少长多少尺(注:1丈等于10尺)(  )
A.29尺B.24尺C.26尺D.30尺

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在某学校组织的一次智力竞赛中,比赛共分为两个环节,其中第一环节竞赛题有A、B两组题,每个选手最多有3次答题机会,答对一道A组题得20分,答对一道B组题得30分.选手可以任意选择答题的顺序,如果前两次得分之和超过30分即停止答题,进入下一环节比赛,否则答3次.某同学正确回答A组题的概率都是p,正确回答B组题的概率都是$\frac{1}{4}$,且回答正确与否相互之间没有影响.该同学选择先答一道B组题,然后都答A组题.已知第一环节比赛结束时该同学得分超过30分的概率为$\frac{5}{9}$.
(Ⅰ)求p的值;
(Ⅱ)用ξ表示第一环节比赛结束后该同学的总得分,求随机变量ξ的数学期望;
(Ⅲ)试比较该同学选择都回答A组题与选择上述方式答题,能进入下一环节竞赛的概率的大小.

查看答案和解析>>

同步练习册答案