精英家教网 > 高中数学 > 题目详情
20.若 数列$\left\{{a_n}\right\}满足{a_1}=2,{a_{n+1}}=\frac{{1+{a_n}}}{{1-{a_n}}}(n∈{N^*})$,则该数列的前2017项的乘积是(  )
A.-2B.-3C.2D.$-\frac{1}{2}$

分析 数列$\left\{{a_n}\right\}满足{a_1}=2,{a_{n+1}}=\frac{{1+{a_n}}}{{1-{a_n}}}(n∈{N^*})$,可得:an+4=an,a1a2a3a4=1.利用周期性即可得出.

解答 解:∵数列$\left\{{a_n}\right\}满足{a_1}=2,{a_{n+1}}=\frac{{1+{a_n}}}{{1-{a_n}}}(n∈{N^*})$,
∴a2=$\frac{1+{a}_{1}}{1-{a}_{1}}$=-3,同理可得:a3=$-\frac{1}{2}$,a4=$\frac{1}{3}$,a5=2,….
∴an+4=an,a1a2a3a4=1.
∴该数列的前2017项的乘积=1504×a1=2.
故选:C.

点评 本题考查了数列递推关系、数列的周期性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.在(1+x)+(1+x)2+(1+x)3+…+(1+x)11的展开式中,x2的系数是(  )
A.55B.66C.165D.220

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知△ABC的外接圆半径为1,角A,B,C的对边分别为a,b,c,且2acos A=ccos B+bcos C.
(Ⅰ)求A;
(Ⅱ)若b2+c2=7,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在四棱锥DN⊥平面PBC中,平面PAD⊥平面ABCD,△PAD为等边三角形,AB=AD=$\frac{1}{2}$CD=2,AB⊥AD,AB∥CD,点M是PC的中点.
(I)求证:MB∥平面PAD;
(II)求二面角P-BC-D的余弦值;
(III)在线段PB上是否存在点N,使得DN⊥平面PBC?若存在,请求出$\frac{PN}{PB}$的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知f(x)=3cosx-4sinx,x∈[0,π],则f(x)的值域为[-5,3].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$•$\overrightarrow{b}$=1,|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=3,则|$\overrightarrow{a}$-$\overrightarrow{b}$|=(  )
A.$\sqrt{13}$B.6C.$\sqrt{11}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数y=$\sqrt{3}$sin2x-cos2x的图象可由函数$y=2sin(2x+\frac{π}{6})$的图象至少向右平移$\frac{π}{6}$个单位长度得到.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知抛物线C:y2=2px(p>0)的焦点为F,过点F的直线l与抛物线C及其准线分别交于P,Q两点,$\overrightarrow{QF}=3\overrightarrow{FP}$,则直线l的斜率为$±\sqrt{15}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知(1+i)x=1+yi,其中x,y是实数,i是虚数单位,则|x+yi|=$\sqrt{2}$.

查看答案和解析>>

同步练习册答案