精英家教网 > 高中数学 > 题目详情
15.设定义在R上的偶函数y=f(x),满足对任意t∈R都有f(t)=f(2-t),且x∈(0,1]时,f(x)=$\frac{x}{{e}^{x}}$,a=f($\frac{2015}{3}$),b=f($\frac{2016}{5}$),c=f($\frac{2017}{7}$),则(  )
A.b<c<aB.a<b<cC.c<a<bD.b<a<c

分析 由已知得f(2+t)=f(2-2-t)=f(-t)=f(t),求出函数的周期性,结合函数f(x)在[0,1]的表达式求出f(x)的单调性,从而比较a,b,c的大小即可.

解答 解:∵定义在R上的偶函数y=f(x),满足对任意t∈R都有f(t)=f(2-t),
∴f(2+t)=f(2-2-t)=f(-t)=f(t),
∴f(x)是以2为周期的函数,
∵x∈[0,1]时,f(x)=$\frac{x}{{e}^{x}}$,
f′(x)=$\frac{1-x}{{e}^{x}}$≥0在[0,1]恒成立,
故f(x)在[0,1]递增,
由a=f($\frac{2015}{3}$)=f(1+$\frac{2}{3}$)=f(-$\frac{1}{3}$)=f($\frac{1}{3}$),
b=f($\frac{2016}{5}$)=f(1+$\frac{1}{5}$)=f(-$\frac{4}{5}$)=f($\frac{4}{5}$),
c=f($\frac{2017}{7}$)=f($\frac{1}{7}$),
∴c<a<b,
故选:C.

点评 本题考查函数值的求法,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知向量$\overrightarrow{a}$=(3,4),$\overrightarrow{b}$=(-2,4),那么$\overrightarrow{a}$在$\overrightarrow{b}$方向上的投影是$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.有一容量为100的样本,数据的分组以及各组的频数如表:
分组频数
[100,110)5
[110,120)35
[120,130)30
[130,140)20
[140,150)10
(Ⅰ)列出样本的频率分布表;并画出频率分布直方图;
(Ⅱ)根据频率分布直方图估计,该样本数据的平均数(同一组中的数据用该区间的中点值作代表).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.圆(x-1)2+y2=9的半径为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\frac{2x-5}{x-3}$的值域为(-∞,0]∪[4,+∞),求函数f(x)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.求和:3+2×32+3×33+4×34+…+n•3n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=ax2+blnx+c(a,b,c∈R)的图象在点(e,1)处的切线过原点.
(1)若a=1,证明f(x)-lnx>0;
(2)若对任意x>0,都有f(x)≤kx+m≤xf(x),求k,m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若直线y=x+b与圆x2+y2=5总有交点,则b的取值范围是[-$\sqrt{10}$,$\sqrt{10}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若(1+x)2n=a0+a1x+a2x2+…+a2nx2n,令f(n)=a0+a2+a4+…+a2n,则f(1)+f(2)+…+f(n)等于(  )
A.$\frac{1}{3}$(2n-1)B.$\frac{1}{6}$(2n-1)C.$\frac{4}{3}$(4n-1)D.$\frac{2}{3}$(4n-1)

查看答案和解析>>

同步练习册答案