如图,直三棱柱ABC-A′B′C′,∠BAC=90°,AB=AC=
,AA′=1,点M、N分别为A′B和B′C′的中点.
![]()
(1)证明:MN∥平面A′ACC′;
(2)求三棱锥A′-MNC的体积(锥体体积公式V=
Sh,其中S为底面面积,h为高).
科目:高中数学 来源: 题型:
如图所示,四棱锥P-ABCD中,底面ABCD为正方形,PD⊥平面ABCD,PD=AB=2,E、F、G分别为PC、PD、BC的中点.
(1)求证:PA⊥EF;
(2)求二面角D-FG-E的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
对于平面α和共面的直线m、n,下列命题是真命题的是( )
A.若m,n与α所成的角相等,则m∥n
B.若m∥α,n∥α,则m∥n
C.若m⊥α,m⊥n,则n∥α
D.若m⊂α,n∥α,则m∥n
查看答案和解析>>
科目:高中数学 来源: 题型:
(2013·长春三校调研)如图,已知四棱锥P-ABCD的底面为直角梯形,AB∥CD,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=
AB=1,M是PB的中点.
(1)求证:AM=CM;
(2)若N是PC的中点,求证:DN∥平面AMC.
[
查看答案和解析>>
科目:高中数学 来源: 题型:
已知两条不同的直线m、n,两个不同的平面α、β,则下列命题中的真命题是( )
A.若m⊥α,n⊥β,α⊥β,则m⊥n
B.若m∥α,n∥β,α∥β,则m∥n
C.若m⊥α,n∥β,α⊥β,则m⊥n
D.若m∥α,n⊥β,α⊥β,则m∥n
查看答案和解析>>
科目:高中数学 来源: 题型:
在长方体ABCD-A1B1C1D1中,AA1=AD=2,E是棱CD上的一点.
(1)求证:AD1⊥平面A1B1D;
(2)求证:B1E⊥AD1;
(3)若E是棱CD的中点,在棱AA1上是否存在点P,使得DP∥平面B1AE?若存在,求出线段AP的长;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com