精英家教网 > 高中数学 > 题目详情
17.已知平面内有7条直线,其中任何三条直线不共点,任何两条直线不平行,则7条直线共形成21个交点.

分析 直接由组合概念求出7条直线共形成交点的组合数,展开组合数公式求得答案.

解答 解:∵7条直线中任意两条不平行,∴任意两条直线有交点,
又任意三条不共点,
∴7条直线共形成的交点个数为${C}_{7}^{2}=\frac{7!}{2!5!}$=21.
故答案为:21.

点评 本题考查了组合及组合数公式,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.在△ABC中,角A,B,C所对的边分别为a,b,c,sin2A+sin2B+sin2C=2$\sqrt{3}$sinAsinBsinC,且a=2,则△ABC的外接圆半径R=$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知定义在{x|x≠k,k∈Z}上的奇函数f(x)对定义域内的任意实数x满足:f(-x)=f(x+2),且1<x<2时,f(x)=x3-x,则方程f(x)=6log12x(x>2)的解的个数为(  )
A.2B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知sin$\frac{x}{2}$-2cos$\frac{x}{2}$=0,求tanx的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.某高二文科学生在参加理、化、生三门课程的学业水平测试中,取得A等级的概率分别为$\frac{2}{3}$、$\frac{3}{5}$、$\frac{2}{5}$,且三门课程的成绩是否取得A等级相互独立.记X为该生取得A等级的课程数,其分布列如表所示,则数学期望EX=$\frac{5}{3}$.
X0123
P$\frac{2}{25}$ab$\frac{4}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若在△ABC中,2cosBsinA=sinC,则△ABC的形状一定是(  )
A.等腰直角三角形B.直角三角形C.等腰三角形D.等边三角形

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在△ABC中,已知a=x,b=2,∠B=60°,如果△ABC有两组解,则x的取值范围是2<x<$\frac{4\sqrt{3}}{3}$..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.有3本不同的数学书,2本不同的物理书,3本不同的化学书,全部竖起排成一排,若要求数学书互不相邻,同时物理书也互不相邻,有多少种排法?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=ex-m-x,其中m为常数.
(1)若对任意x∈R有f(x)≥0成立,求m的取值范围;
(2)当m>1时,判断f(x)在[0,2m]上零点的个数,并说明理由.

查看答案和解析>>

同步练习册答案