精英家教网 > 高中数学 > 题目详情
10.已知数列{an}满足anan+1=2n,则$\frac{{a}_{7}}{{a}_{3}}$=(  )
A.2B.4C.5D.$\frac{5}{2}$

分析 数列{an}满足anan+1=2n,可得:2=$\frac{{a}_{n+2}}{{a}_{n}}$.即可得出.

解答 解:∵数列{an}满足anan+1=2n
∴$\frac{{a}_{n+1}{a}_{n+2}}{{a}_{n}{a}_{n+1}}$=$\frac{{2}^{n+1}}{{2}^{n}}$=2=$\frac{{a}_{n+2}}{{a}_{n}}$.
∴$\frac{{a}_{5}}{{a}_{3}}$=2,$\frac{{a}_{7}}{{a}_{5}}$=2,
则$\frac{{a}_{7}}{{a}_{3}}$=4.
故选:B.

点评 本题考查了数列的递推关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.y求下列函数的单调区间:y=2-cosx.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=|2x-1|+|x+1|-a的图象与x轴有且仅有一个交点.
(1)求实数a的值;
(2)若m,n∈[-a,a],求证:2|m+n|<|4+mn|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若480°角的终边上有一点(a,4),则a的值是(  )
A.$\frac{4\sqrt{3}}{3}$B.$-\frac{4\sqrt{3}}{3}$C.4$\sqrt{3}$D.$-4\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)的导函数f′(x),且瞒足f(x)=2xf′(1)+x3,则f′(1)等于(  )
A.-1B.-3C.1D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=$\frac{\sqrt{2}}{2}$cos(2x+$\frac{π}{4}$).
(1)若0<α<$\frac{π}{2}$,且cosα=$\frac{\sqrt{2}}{2}$,求f(α)的值;
(2)求函数f(x)的最小正周期及单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.计算:$\frac{tan68°+tan52°}{1-tan68°tan52°}$=$-\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图在长方形ABCD中,$\overrightarrow{AB}=\overrightarrow a,\overrightarrow{AD}=\overrightarrow b,N$是CD的中点,M是线段AB上的点,$|{\overrightarrow a}|=2,|{\overrightarrow b}|=1$.
(1)若M是AB的中点,求证:$\overrightarrow{AN}$与$\overrightarrow{CM}$共线;
(2)在线段AB上是否存在点M,使得$\overrightarrow{BD}$与$\overrightarrow{CM}$垂直?若不存在请说明理由,若存在请求出M点的位置;
(3)若动点P在长方形ABCD上运动,试求$\overrightarrow{AP}•\overrightarrow{AB}$的最大值及取得最大值时P点的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在等差数列{an}中,已知a4+a7=16,则该数列前11项和S11=(  )
A.58B.88C.143D.176

查看答案和解析>>

同步练习册答案