精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)=sin(ωx-$\frac{π}{4}$)(ω>0)的最小正周期为π,将其图象向左平移$\frac{π}{4}$个单位,得到函数y=g(x)的图象,则函数y=g(x)的单调递增区间是(  )
A.[-$\frac{5π}{8}$+2kπ,$\frac{π}{8}$+2kπ],k∈ZB.[-$\frac{3π}{8}$+2kπ,$\frac{π}{8}$+2kπ],k∈Z
C.[-$\frac{3π}{8}$+kπ,$\frac{π}{8}$+kπ],k∈ZD.[-$\frac{5π}{8}$+kπ,$\frac{π}{8}$+kπ],k∈Z

分析 由函数的周期求得ω,再由函数的图象平移得到g(x)的解析式,最后由相位在正弦函数的增区间内求得x的范围得答案.

解答 解:∵函数f(x)=sin(ωx-$\frac{π}{4}$)(ω>0)的最小正周期为π,
∴$\frac{2π}{ω}=π$,得ω=2.
则f(x)=sin(2x-$\frac{π}{4}$).
将其图象向左平移$\frac{π}{4}$个单位,得g(x)=sin[2(x+$\frac{π}{4}$)-$\frac{π}{4}$]=sin(2x+$\frac{π}{4}$).
由$-\frac{π}{2}+2kπ≤2x+\frac{π}{4}≤\frac{π}{2}+2kπ$,
得$-\frac{3π}{8}+kπ≤x≤\frac{π}{8}+kπ,k∈Z$.
∴函数y=g(x)的单调递增区间是[-$\frac{3π}{8}$+kπ,$\frac{π}{8}$+kπ],k∈Z.
故选:C.

点评 本题考查三角函数的图象平移,考查了与正弦函数由关的复合函数单调性的求法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.甲、乙两队参加听歌猜歌名游戏,每队3人.随机播放一首歌曲,参赛者开始抢答,每人只有一次抢答机会(每人抢答机会均等),答对者为本队赢得一分,答错得零分.假设甲队中每人答对的概率均为$\frac{2}{3}$,乙队中3人答对的概率分别为$\frac{2}{3}$,$\frac{1}{3}$,$\frac{1}{2}$,且各人回答正确与否相互之间没有影响.
(Ⅰ)若比赛前随机从两队的6个选手中抽取两名选手进行示范,求抽到的两名选手在同一个队的概率;
(Ⅱ)用ξ表示甲队的总得分,求随机变量ξ的分布列和数学期望;
(Ⅲ)求两队得分之和大于4的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设点P是椭圆$\frac{{x}^{2}}{4}$+y2=1上异于长轴端点的一个动点,F1、F2分别为椭圆的左、右焦点,O为坐标原点,若M是∠F1PF2的平分线上一点,且F1M⊥MP,则|$\overrightarrow{OM}$|的取值范围是[0,$\sqrt{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知复数$\frac{1-i}{z}$=4+2i(i为虚数单位),则复数z在平面上的对应点所在的象限是(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.某中学为调查在校学生的视力情况,拟采用分层抽样的方法,从该校三个年级中抽取一个容量为30的样本进行调查,已知该校高一、高二、高三年级的学生人数之比为4:5:6,则应从高一年级学生中抽取8名学生.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,已知AC=4,BC=5.
(1)若∠A=60°,求cosB的值;
(2)若cos(A-B)=$\frac{7}{8}$,点D在边BC上,满足DB=DA,求CD的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.△ABC的内角A、B、C对边分别为a,b,c且满足$\frac{a}{6}$=$\frac{b}{4}$=$\frac{c}{3}$,则$\frac{sinC-sinA}{sinA+sinB+sinC}$=(  )
A.-$\frac{3}{13}$B.$\frac{12}{7}$C.$\frac{3}{13}$D.-$\frac{7}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某外语学校的一个社团中有7名同学,其中2人只会法语,2人只会英语,3人既会法语又会英语,现选派3人到法国的学校交流访问.
(1)在选派的3人中恰有2人会法语的概率;
(2)在选派的3人中既会法语又会英语的人数ξ的分布列与期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.执行如图所示的程序框图,则输出S的值为(  )
A.1500B.1800C.2000D.2500

查看答案和解析>>

同步练习册答案