精英家教网 > 高中数学 > 题目详情
2.在△ABC中,已知AC=4,BC=5.
(1)若∠A=60°,求cosB的值;
(2)若cos(A-B)=$\frac{7}{8}$,点D在边BC上,满足DB=DA,求CD的长度.

分析 (1)由已知结合正弦定理求得sinB,再由已知知B为锐角,由平方关系求得cosB的值;
(2)由题意画出图形,设BD=x,则AD=x,CD=5-x,在△ADC中,由余弦定理求得x值,则CD的长度可求.

解答 解:(1)在△ABC中,由AC=4,BC=5,∠A=60°,
得$\frac{BC}{sinA}=\frac{AC}{sinB}$,即$\frac{5}{sin60°}=\frac{4}{sinB}$,
∴sinB=$\frac{4}{5}sin60°=\frac{4}{5}×\frac{\sqrt{3}}{2}=\frac{2\sqrt{3}}{5}$
∵AC<BC,
∴∠B为锐角,则cosB=$\sqrt{1-si{n}^{2}B}=\sqrt{1-(\frac{2\sqrt{3}}{5})^{2}}=\frac{\sqrt{13}}{5}$;
(2)如图,设BD=x,则AD=x,CD=5-x,
在△ADC中,cos∠CAD=cos(A-B)=$\frac{7}{8}$,
由余弦定理得:$(5-x)^{2}={x}^{2}+{4}^{2}-2•4•x•\frac{7}{8}$,
解得:x=3,
∴CD=5-3=2.

点评 本题考查三角形的解法,考查了正弦定理和余弦定理的应用,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.用数学归纳法证明:对任意的n∈N*,$\frac{1}{1×3}$+$\frac{1}{3×5}$+…+$\frac{1}{(2n-1)(2n+1)}$=$\frac{n}{2n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在△ABC中,角A,B,C对应的边分别是a,b,c,其中A=120°,b=1,△ABC的面积S=$\sqrt{3}$,则$\frac{a+b}{sinA+sinB}$=$2\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知各项均为正数的等比数列{an}中,若a5a9=3,a6a10=9,则a7a8=(  )
A.$\sqrt{3}$B.2$\sqrt{3}$C.4$\sqrt{3}$D.3$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=sin(ωx-$\frac{π}{4}$)(ω>0)的最小正周期为π,将其图象向左平移$\frac{π}{4}$个单位,得到函数y=g(x)的图象,则函数y=g(x)的单调递增区间是(  )
A.[-$\frac{5π}{8}$+2kπ,$\frac{π}{8}$+2kπ],k∈ZB.[-$\frac{3π}{8}$+2kπ,$\frac{π}{8}$+2kπ],k∈Z
C.[-$\frac{3π}{8}$+kπ,$\frac{π}{8}$+kπ],k∈ZD.[-$\frac{5π}{8}$+kπ,$\frac{π}{8}$+kπ],k∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.甲、乙两人玩游戏,规则如下:第奇数局,甲赢的概率为$\frac{3}{4}$,第偶数局,乙赢的概率为$\frac{3}{4}$,每一局没有平局,规定:当其中一人赢的局数比另一人赢的局数多2次时游戏结束,则游戏结束时,甲乙两人玩的局数的数学期望为$\frac{16}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.从2016名学生中选取50名学生参加数学竞赛,若采用下面的方法选取:先用简单随机抽样从2016人中剔除16人,剩下的2000人再按系统抽样的方法抽取50人,则在2016人每人入选的概率是(  )
A.不全相等B.均不相等
C.都相等且为$\frac{25}{1008}$D.都相等且为$\frac{1}{40}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知三棱柱ABC-A1B1C1的所有棱长相等,若∠AA1B1=∠AA1C1=60°,则异面直线A1C与AB1所成角的余弦值是(  )
A.$\frac{\sqrt{3}}{6}$B.$\frac{\sqrt{2}}{3}$C.$\frac{\sqrt{15}}{8}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.给定集合A={a1,a2,a3,…,an}(n∈N*,n≥3)中,定义ai+aj(1≤i<j≤n,i,j∈N*)中所有不同值的个数为集合A两元素和的容量,用L(A)表示.若数列{an}是公差不为0的等差数列,设集合A={a1,a2,a3,…,a2016},则L(A)=4029.

查看答案和解析>>

同步练习册答案