分析 (Ⅰ)由椭圆的定义知,|AF1|+|AF2|=|BF1|+|BF2|=2a,即可得出△F1AB的周长是常数.
(Ⅱ)由周长为16,得a=4; 又|AF1|、|F1F2|、|AF2|成等差数列,可得2|F1F2|=|AF1|+|AF2|,即4c=2a,解得c.再利用b2=a2-c2,即可得出.
解答 解:(Ⅰ)由椭圆的定义知,|AF1|+|AF2|=|BF1|+|BF2|=2a,∴△F1AB的周长是常数4a.
(Ⅱ)由周长为16,得a=4; 又|AF1|、|F1F2|、|AF2|成等差数列,
∴2|F1F2|=|AF1|+|AF2|,
∴4c=2a,解得c=2.
b2=a2-c2=12.
∴椭圆的标准方程为:$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}$=1.
点评 本题考查了椭圆的定义标准方程及其性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①③ | B. | ①② | C. | ②③ | D. | ②④ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | -4 | C. | -2 | D. | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| x | -3 | -2 | -1 | 1 | 2 | 3 |
| f(x) | 5 | 1 | -1 | -3 | 3 | 5 |
| g(x) | 1 | 4 | 2 | 3 | -2 | -4 |
| A. | 3 | B. | 4 | C. | -3 | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{50}$ | B. | $\frac{1}{20}$ | C. | $\frac{20}{1003}$ | D. | $\frac{50}{1003}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com