精英家教网 > 高中数学 > 题目详情
12.讨论函数y=$\frac{1}{\sqrt{{x}^{2}-2x-3}}$的单调性.

分析 由x2-2x-3>0,可解得:x<-1或x>3,即可由u=x2-2x-3的单调性讨论复合函数的单调性.

解答 解:由x2-2x-3>0,可解得:x<-1或x>3,
令u=x2-2x-3,在(-∞,-1)是单调递减的,在(3,+∞)是单调递增的,
由y=$\frac{1}{\sqrt{u}}$,可得:函数y=$\frac{1}{\sqrt{{x}^{2}-2x-3}}$在(-∞,-1)是单调递增的,在(3,+∞)是单调递减.

点评 本题主要考查了复合函数的单调性,函数单调性的判断与证明,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=alnx-$\frac{x-1}{x+1}$,g(x)=ex(其中e为自然对数的底数).
(1)若函数f(x)在区间(0,1)内是增函数,求实数a的取值范围;
(2)当b>0时,函数g(x)的图象C上有两点P(b,eb)、Q(-b,e-b),过点P、Q作图象C的切线分别记为l1、l2,设l1与l2的交点为M(x0,y0),证明:x0>0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数y=ln|x-a|有两个零点,则这两个零点之和为2a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知向量$\overrightarrow{m}$=(0,-1),$\overrightarrow{n}$=(cosA,2cos2$\frac{C}{2}$),其中A、B、C是△ABC的内角,且A、B、C满足2B=A+C,求|$\overrightarrow{m}$+$\overrightarrow{n}$|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}的前n项和Sn=23n-n2
(1)求证:{an}是等差数列;
(2)求数列{|an|}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.从甲、乙、丙、丁、戊、己6人中选4人参加4×100接力赛,甲,乙都不跑中间两棒,有144种选法.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,A,B是椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1(a>b>0)$的两个顶点,|AB|=$\sqrt{7}$,椭圆离心率为$\frac{1}{2}$.
(1)求椭圆C的方程;
(2)若直线l∥AB,且与x,y轴分别交于点M,N,与椭圆交于E,F,如图所示,记△BEN与△AMF的面积分别为S1与S2,求$\frac{{S}_{1}}{{S}_{2}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在△PCB中,已知∠PCB=$\frac{π}{2},∠BPC=\frac{π}{3}$,PB=4.点D为PB的中点.若△APC是△BPC绕直线PC顺时针旋转而成的,记二面角B-PC-A的大小为θ.
(Ⅰ)当θ=$\frac{π}{2}$时,求证:平面ACD⊥平面PBC;
(Ⅱ)当θ=$\frac{2π}{3}$时,求锐二面角B-CD-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知F1,F2是椭圆和双曲线的公共焦点,P是它们的一个公共点,且∠F1PF2=$\frac{π}{3}$,椭圆的离心率为e1,双曲线的离心率e2,则$\frac{1}{e_1^2}+\frac{3}{e_2^2}$=4.

查看答案和解析>>

同步练习册答案