分析 (I)利用$\left\{\begin{array}{l}{x=ρcosθ}\\{y=ρsinθ}\end{array}\right.$可把曲线C的极坐标方程化为直角坐标方程,可得圆心、半径,由于直线l过点(1,-1),求出该点到圆心的距离,与半径半径即可判断出位置关系;
(II)利用点到直线的距离公式与弦长公式即可得出.
解答 解:(Ⅰ)∵曲线C的极坐标方程为ρ=2cosθ-4sinθ,
∴ρ2=2ρcosθ-4ρsinθ,
∴曲线C的直角坐标方程为x2+y2=2x-4y,即(x-1)2+(y+2)2=5,
∵直线l过点(1,-1),且该点到圆心的距离为$\sqrt{(1-1)^{2}+(-1+2)^{2}}$$<\sqrt{5}$,
∴直线l与曲线C相交.
(Ⅱ)当直线l的斜率不存在时,直线l过圆心,|AB|=2$\sqrt{5}$≠3$\sqrt{2}$,
因此直线l必有斜率,设其方程为y+1=k(x-1),即kx-y-k-1=0,
圆心到直线l的距离$d=\frac{1}{\sqrt{{k}^{2}+1}}$=$\sqrt{{(\sqrt{5})}^{2}-(\frac{3\sqrt{2}}{2})^{2}}$,
解得k=±1,
∴直线l的斜率为±1.
点评 本小题主要考查直线的参数方程及其几何意义、圆的极坐标方程、直线与圆的位置关系、点到直线的距离公式、弦长公式等基础知识;考查运算求解能力;数形结合思想,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | (-1,1) | B. | [1,3) | C. | (0,1) | D. | (-1,0) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分而不必要条件 | B. | 必要而不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
| 高一 | 高二 | 高三 | |
| 女生 | 373 | m | n |
| 男生 | 377 | 370 | p |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{2\sqrt{5}}{5}$ | B. | -$\frac{\sqrt{5}}{5}$ | C. | $\frac{\sqrt{5}}{5}$ | D. | $\frac{2\sqrt{5}}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com